

Hand Held Operator Interface Technical User Reference Manual

Two Technologies, Inc. 419 Sargon Way Horsham, PA 19044 URL: Http://www.2T.com

Phone Number: 215.441.5305 Fax Number: 215.441.0423

he ProMotion is an ASCII terminal for use with computers or properly equipped instruments or industrial machinery. It features a 20, 30 or 45 key keypad with tactile feedback, and a 192 X 128 Pixel liquid crystal alphanumeric display showing 8 lines of 24 or 16 lines of 32 characters. Four LED's may be added as an option. A Graphics Mode as well as Advanced

Control Mode are included.

The terminal provides user selectable communications parameters, programmable function keys, and other features which make it ideal for motion control applications requiring flexibility and solid, reliable operation.

The ProMotion is available in a number of configurations. The particular configuration is identified by a suffix applied to the model number, as shown below:

Figure 1: Selection Matrix

**1 An inexpensive linear regulator (7805A) with a minimum input of 7.5V and a maximum voltage of 28V.

It is designed to dissipate 1 watt of power, thereby limiting maximum permissible input voltage according to current draw of terminal.

***2 A switching type voltage regulator with a minimum input of 9V and a maximum voltage of 28V.

Input voltage is not dependent on current draw of terminal and may be used with all options of Two Technologies terminals.

POWER REQUIRMENTS

The table below summarizes the power requirements for the various configurations. Operating voltages specified are measured at the terminal interface connector. In the table "xx" represents"20", "30" or "45."

CONFIGURATION	POWER REQUIREMENT
PRMxxR2-1	5 volts ±5% volts DC @ 85mA
PRMxxR2-2	7.5-12 volts DC @ 90mA
PRMNELxxR2-1	5 volts ±5% DC @ 95mA
PRMNELxxR2-2	7.5-12 volts DC @ 110mA
PRMxxR4-1	5 volts ±5% volts DC @ 90mA
PRMxxR4-2	7.5-12 volts DC @ 95mA
PRMNELxxR4-1	5 volts ±5% volts DC @ 110mA
PRMNELxxR4-2	7.5-12 volts DC @ 120mA

Table 1: Typical Power Requirements

PRM Series CURRENT VALUES Table 2: PRM Series Typical Current Requirements

Base unit current draw (for -1 and -2 units)		
RS232 Option	85 mA	
RS422 Option	90mA	
Options		
Add current to Base unit to calculate total current requirements.		
EL BACKLIGHT (NEL) 10mA		
BACKLIT KEYPAD (KL)	80 mA	

MAXIMUM ALLOWABLE VOLTAGES MAXIMUM VOLTAGES ALLOWED FOR -2 REGULATED POWER SUPPLY

OTHER VOLTAGE INPUTS MUST USE A SWITCH MODE TYPE POWER SUPPLY (-H)

The charts on this page should be used to determine if the standard regulated power supply or the switch mode regulator power supply is required for the terminal.

Restricted Input Voltage vs. Current Draw

Figure 2: Calculated Operating Current

For example: A current draw of 99mA was calculated requiring a maximum voltage of 15 Volts on the chart above.

Should the input voltage exceed the 15 Volt limit, a -H (switching mode supply) will have to be substituted for the -2 supply.

THIS PAGE LEFT INTENTIONALLY BLANK

Copyright[©] 2001 Two Technologies, Inc.

Table of Contents

POWER REQUIRMENTS	iv
PRM Series CURRENT VALUES	v
MAXIMUM ALLOWABLE VOLTAGES	v
Section 1 Overview	
1.1 Connecting the Terminal	1.1
interface options	1.3
display operation	1.3
keypad operation	1.3
operating modes	1.3
SELF TEST	1.4
ProMotion LED Option	1.5
Section 2 Configuration	
2.1 Configurations	2.1
Configuration	2.1
default configuration	2.1
Contrast mid-point setting	2.3
disable modifications	2.4
2.2 Parameters	2.4
settable parameters:	2.4
baud	2.5
*data bits	2.5
*parity	2.5
*Stop bits	2.5
*display pe	2.5
repeat	2.6
key click	2.6
knp function	2.6
cursor	2.6
cursor blink	2.6
xon/xoff	2.6
handshake (hardware)	2.6
echo	2.7
escape mode	2.7
cr/lf mode	2.7

self-test	2.7
shift lock	2.8
scroll	2.8
view angle (contrast)	2.8
enable break	2.9
screen size	2.9
BACKLIGHT (IF EQUIPPED)	2.9
menu modes	2.9
view parameter settings summary	2.9
setting the parameters	2.10
parameter summary	2.11
Programmable keys	2.12
Function Keys	2.12
ProMotion 45 escape mode	2.12
ProMotion 30 escape mode	2.12
ProMotion 20 escape mode	2.13
Programming the keys	2.13
Programming Keys	2.14
Section 3 Specifications	
Section 4 Operation	
4.1 Controls and Indicators	4.1
ProMotion Safety Switches	4.3
LiveMan Operation	4.3
E-Stop Operation	4.4
4.2 Host Control of the Terminal	4.5
ansi mode host commands	4.6
cursor movement commands	4.6
erasing	4.7
character Attributes	4.7
sounds	4.7
reset	4.8
reports	4.8
parameter modification	4.9
key repeat	4.9
key click	4.9
knp function	4.10

cursor	4.10
cursor blink	4.10
LED CONTROL	4.11
escape mode	4.12
cr/lf mode	4.12
setting all parameters	4.12
Set parameters command table	4.14
loading default values	4.15
programming keys	4.15
ERROR CODE	4.16
Key number charts	4.17
ANSI Escape Sequence Table	4.18
4.3 Private mode (host commands)	4.21
cursor movement commands	4.21
cursor position commands	4.21
erasing	4.22
character attributes	4.23
sounds	4.23
reports	4.23
mode switching	4.23
private escape sequence table	4.24
additional control codes	4.25
4.4 Control Character Commands	4.26
Extended operations	4.27
extended function key command sumn	hary 4.27
extended programmable key command	l usage 4.28
break functions	4.28
output control	4.28
pause commands	4.29
branching commands	4.31
handshake out line manipulation	4.33
Display characters	4.34
programmable display characters	4.34
display charaCter programming	4.35
4.5 ProMotion GRAPHICS MODE	4.41
Download Graphics file to ProMotion	4.42
File Conversion Utility (PROCNV.EX	E) 4.43

Graphics Control Escape Sequences	4.45
real time graphics mode	4.47
4.6 Advanced Control Mode (ACM)	4.49
ENQ Acknowledgement	4.50
Key Release Code function	4.52
N-Key Rollover	4.53
Key Codes	4.54
SHIFT and CTRL enable/disable	4.33
Section 5 Troubleshooting	
No cursor on display	5.1
Power Problems	5.1
Cursor Problems	5.1
Resets by Itself	5.1
Not receiving or displaying correct characters	5.2
PE is Displayed	5.3
Double Characters Displayed	5.3
Unit seems to lock-up on power up	5.4
Unit does not perform self-test	5.4
Cannot access parameter mode	5.5
Cannot access function key programming mode	5.5
Incorrect characters displayed.	5.5
Function keys not sending correct values	5.6
Lost characters	5.7
Key does not repeat when pressed	5.7
Section 6 Miscellaneous	
6.1 CUSTOMIZATIONS	9
6.2 ACCESSORIES	10
WIRED ADAPTERS	11
HARD-WIRED CABLES	13
Section 7 Appendices	
APPENDIX A	15

Appendix B	17
ProTerm Extended Character Set	17
APPENDIX C	19
DLE for detection of disconnection	30

vi

Section 1 Overview

1.1 Connecting the Terminal

A Permanent wire is provided for all connections to the terminal.

The pinout of the cable on the bottom of the terminal is described below. The connector is shown as viewed from the outside of the terminal.

Cable End (Viewed from Back of Connector)

PIN NUMBER	RS-232C assignment
1	COMMON
2	DATA OUT FROM TERMINAL
3	HANDSHAKE OUT FROM TERMINAL
4	LIVEMAN 2 COMMON
5	LAMP
6	E-STOP 2 COMMON
7	LIVEMAN 1 COMMON
8	E-STOP 1 COMMON
9	DATA IN TO TERMINAL
10	HANDSHAKE IN TO TERMINAL
11	+SUPPLY TO TERMINAL
12	LIVEMAN 2 NORMALY OPEN
13	E-STOP 2 NORMALLY CLOSED
14	LIVEMAN 1 NORMALLY OPEN
15	E-STOP 1 NORMALLY CLOSED

PIN NUMBER	RS-422 assignment
1	COMMON
2	+DATA OUT FROM TERMINAL
3	-DATA OUT FROM TERMINAL
4	LIVEMAN 2 COMMON
5	LAMP
6	E-STOP 2 COMMON
7	LIVEMAN 1 COMMON
8	E-STOP 1 COMMON
9	+DATA IN TO TERMINAL
10	-DATA IN TO TERMINAL
11	+SUPPLY TO TERMINAL
12	LIVEMAN 2 NORMALY OPEN
13	E-STOP 2 NORMALLY CLOSED
14	LIVEMAN 1 NORMALLY OPEN
15	E-STOP 1 NORMALLY CLOSED

INTERFACE OPTIONS

The ProMotion is delivered with a four-wire interface, see above table.

Interface Type	Device
RS-232	Linear Technology LT1281
RS-422	Linear Technology LTC490
CMOS/TTL	Linear Technology LTC490
Data sheets for these devices are available directly from Linear Technologies	

Table 3: Interface Devices

DISPLAY OPERATION

The terminal screen displays the standard U.S. ASCII 96 character set. Characters are placed into the display at the current cursor location. In the absence of commands which alter the cursor location, the cursor moves from left to right as characters are received. The display will scroll when a character is written in the last position in any of the first three rows, the cursor moves to the left most position on the next row. The display will scroll when a character is written to the LAST or LAST+1 character position, depending on which parameter setting is selected The cursor is selectable as blinking, non-blinking, visible or invisible. When visible, the cursor style will indicate the states of the modifier keys SHIFT and CONTROL.

KEYPAD OPERATION

The standard 45 position keypad consists of, the uppercase alphabet, digits 0 through 9, punctuation marks and symbols, and keys for Escape, Space, Back-space and ENTER (CR or CRLF). Modifier keys SHIFT and CONTROL may be selected to operate in normal or locked mode. In the locked mode, pressing a modifier key will toggle its respective state. Transmission of control characters will cause the control state to be canceled. If SHIFT and CONTROL states are both active, lower case alphabetic characters will replace the corresponding upper case alphabetic characters. All keys, with the exception of CTRL and SHIFT, may be re-assigned with user programmed characters or character strings from the key output definition menu.

OPERATING MODES

The ProMotion has several operating modes. The default, or start-up mode, is terminal mode. In this mode, the terminal displays characters received, responds to commands received, and sends characters when keys are pressed. This is the mode in which the terminal is normally used. Other modes, described in the fol-

lowing sections, allow setting the operating parameters of the terminal and programming the definitions of its function keys.

SELF TEST

After the ProMotion has been turned on it will execute a self-test.

The first screen will show all alpha-numeric characters.

This will be followed by a test of the contrast (Viewing Angle) as shown below.

Figure 4: Power on self-test screen 2

The Display, Memory and Extended Memory will then be tested.

Figure 5: Power on self-test screen 3

The software ID is displayed.

The ProMotion will then display a blank screen with a fixed or blinking cursor in Row 1, Column 1, (if selected)

PROMOTION LED OPTION

Figure 6: ProMotion with LED Option

THIS PAGE LEFT INTENTIONALLY BLANK

Section 2 Configuration

2.1 Configurations

CONFIGURATION

A comprehensive set of user-settable operating parameters and programmable function keys makes the ProMotion suitable for diverse applications. Parameter settings and data for the programmable function keys are stored in the terminal's built-in nonvolatile memory.

Any operation which causes data to be stored in the non-volatile memory causes the display to be cleared, and the message "SAVING DATA" to be displayed. When the terminal has finished saving the data, the display is again cleared.

If the Save operation is invoked while in the set parameters or program function key modes described later in this manual, the terminal prompts with the message "ARE YOU SURE?", accompanied by the alert sound (three consecutive short beeps). To proceed with the save, press F1. To exit without saving, press F5.

DEFAULT CONFIGURATION

Each settable parameter and programmable function key is assigned a default value. These values are stored in the terminal's permanent memory, and can be transferred to the nonvolatile memory at any time. To do so, remove power from the terminal. While simultaneously pressing the CTRL, SHIFT and F1 keys, reapply power. After the message "LOAD DEFAULTS" has appeared, the keys can be released. Press the F1 key to reload defaults. This procedure returns all parameters and the programmable function keys to the default configuration. Any changes made to the parameters and characters previously programmed into the function keys will be overwritten. Pressing the F5 key will leave parameters unchanged.

1

Load factory Default Settings

Hold down the SHIFT, CTRL and F1 key while applying power. The BKSP and ENTER as well as F1 are depressed for the 20 key model (if applicable). The Following screen will appear

20 key keypad screen

Selecting no will continue onto self test without changing parameter settings.

The screen below will appear upon acceptance of LOAD DEFAULTS.

Figure 7 : Loading Factory Defaults

The self test will then be initiated unless the applicable model which has contrast midpoint is being used.

2

CONTRAST MID-POINT SETTING (if applicable)

Figure 8 : Contrast mid-point setting (if applicable)

Contrast mid-point is settable from 00 (Lightest) to 99 (Darkest) in increments of 3.

The contrast settings will then be adjusted around this mid point.

This allows the optimization of the display contrast for various environmental conditions which could effect character brightness.

There are 16 levels which may be selected from the menu settings. These are limited to 8 when setting via **HOST CONTROL**.

After completion and acceptance of this setting the ProMotion will go into self test.

Contrast Low Setting

Contrast High Setting

DISABLE MODIFICATIONS

To disable modifications, simultaneously press the CTRL, SHIFT and F3 keys, then apply power. To re-enable modifications, perform the same procedure. When modifications are disabled, menus may not be accessed and escape sequences that program the function keys (ESC[5z), set all parameters (ESC[1z, ESC[2z) and set all defaults (ESC[3z), will be invalid.

2.2 Parameters

his section discusses each of the configuration parameters in detail. A summary of the parameters and their initial delivery values is shown on page 3.7.

SETTABLE PARAMETERS:

Note: On the ProMotion, the setup parameters *STOP BITS and *DISPLAY PE may or may not be displayed, depending on the settings selected for *DATA BITS and *PARITY. The table below shows when *STOP BITS and/or *DISPLAY PE will be accessible (displayed).

SETTINGS		DISPLAY	
DATA BITS	PARITY	STOP BITS	DISPLAY PE
7	NONE	Ν	N
7	IGNORE	Y	Ν
7	EVEN	Y	Y
7	ODD	Y	Y
7	MARK	Y	Y
7	SPACE	Y	Y
8	NONE	Y	Ν
8	IGNORE	Ν	Ν
8	EVEN	Ν	Y
8	ODD	Ν	Y
8	MARK	N	Y
8	SPACE	N	Y

Table 4: Non-displayable Parameters

BAUD

The data rate can be set to: 300, 600, 1200, 2400, 4800, 9600 or 19200 baud.

*DATA BITS

The number of data bits in each character. Either 7 or 8 data bits can be selected. (See Chart)

*PARITY

When employed, an extra bit is added to each character the terminal sends. This bit is used by the receiving device to perform a simple error check on incoming data. The ProMotion can be set to transmit an EVEN, ODD, MARK or SPACE parity bit. With any of these settings, the receiver in the terminal will perform the corresponding check on incoming data. In addition, the PARITY option can be set to NONE or IGNORE. Selecting IGNORE still causes the transmitter to add a parity check bit to each character, but the value of that bit is indeterminate. Selecting NONE prevents the parity bit from being sent entirely. With either of these settings, the receiver performs no error check on incoming characters. (See Chart)

***STOP BITS**

One or two stop bits may be selected with two exceptions. If 7 data bits and NONE parity is selected, TWO stop bits must be used. If 8 data bits and any parity (including ignore) are selected, ONE stop bit must be used. In either case, the selection is automatic and the menu selection for stop bits is not displayed. (See Chart)

*DISPLAY PE

If the terminal is set to perform parity checking on incoming characters, it is possible for the received data to fail the error check. Setting this option determines the action taken by the terminal in response to such an occurrence. When set to ENABLE, the terminal will display a special character in place of the one which caused the error. When set to DIS-ABLE, the terminal simply ignores the error. Since the setting of this parameter is irrelevant if parity checking is not enabled, it will not appear in the parameter menu if the PARITY setting is NONE or IGNORE. (See Chart)

Section 2

REPEAT

The terminal can be set to repeat a keypad character while the key remains pressed at a SLOW, MEDIUM or FAST rate. The repeats are approximately 6, 10 and 36 characters per second respectively.

In all cases, there is a short delay between the initial character and the start of the repeat. When set to DISABLED, key repeat is inoperative. If the KNP function is enabled, the repeat for the keys is disabled by default. In this condition, the REPEAT parameter will not be displayed in the "PARAMETERS" menu.

KEY CLICK

When set to ENABLE, the terminal will emit an audible click through the built-in speaker each time a key is pressed, and for each repeated character.

KNP FUNCTION

This function is used to detect when a key is released or not pressed. When set to ENABLE, the terminal will transmit a keypad character or function key data only once when the key is pressed. When the key is released, a null (00h) character is transmitted. The setting of the REPEAT parameter is ignored if this option is set to ENABLE.

CURSOR

When set to ENABLE, a rectangular cursor appears at the next character position.

CURSOR BLINK

When set to ENABLE, the cursor will blink at a steady rate, when set to DIS-ABLE the cursor will not blink.

XON/XOFF

In addition to hardware handshaking, data flow may also be controlled through software with the XON/XOFF protocol.

HANDSHAKE (HARDWARE)

The ProMotion can be set to generate and recognize the commands XON and XOFF, as well as use the handshake (DTR - DSR or RTS - CTS) lines in models equipped with the RS-232C interface. If enabled, the terminal can inform the host when it is unable to accept data. When the terminal returns to the ready state, it then will inform the host accordingly. Likewise, the terminal will recognize the same commands from the host.

In the terminal, the HANDSHAKE OUT line is the signal to the host, and the HANDSHAKE IN line is the signal from the host. If both XON/XOFF and HANDSHAKE are enabled, HANDSHAKE has priority over XON/XOFF. E.g. XON/XOFF cannot be sent to the host if the HANDSHAKE line from the host is false. If the terminal has received an XOFF command (if XON/XOFF enabled) or the HANDSHAKE line from the host is false (if HANDSHAKE enabled), the terminal will not transmit information to the host. If a key is pressed and the handshake condition has not changed to allow transmission

within one second, the terminal will display a special cursor (if CURSOR

is enabled). Any additional keys pressed will cause an audible tone to be emitted. Pressing CTRL and F5 together will permit the waiting keystroke to be sent and the waiting condition canceled until the next keystroke.

ECHO

May be set to ENABLE or DISABLE. Setting this parameter to ENABLE causes the terminal to echo characters sent by the keypad to the display.

ESCAPE MODE

This setting determines which control sequence set the terminal will recognize. The terminal is capable of responding to a PRIVATE set of sequences as well as ANSI standard 3.64 sequences. See section describing the control sequences for complete information. The default mode is ANSI.

CR/LF MODE

This parameter determines what the ENTER key sends, and how the terminal treats a received linefeed character. In NORMAL mode, the ENTER key sends a carriage return character (ODH), and a received linefeed character (0AH) moves the cursor to the same column in the next line. In NEWLINE mode, the ENTER key sends the carriage return and linefeed characters as a pair (CR+LF). A received linefeed character will be treated as both CR + LF and will move the cursor to the beginning of the next line.

SELF-TEST

This setting determines whether or not the terminal will display a confidence test at the time power is applied. The test shows the entire display character set, and performs a number of internal tests. After the character set has been displayed, the memory test will be performed. During the memory test, a 'SELF-TEST' message will display along with a model identifier string with checksum. The terminal beeps when the test

Section 2

is completed. Should an error be found, a message will be displayed.

SHIFT LOCK

Enable: When the SHIFT key is pressed, subsequent presses will yield shifted characters until the shift key is pressed again. When the CTRL key is pressed, the

cursor will change to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the next key pressed will be a CTRL character.

All subsequent key presses will be normal.

Disable: Shift or CTRL must be held while other keys are pressed to send Shifted or CTRL characters.

Autocancel: When either the Shift or CTRL key is pressed, the next key pressed will be shifted (Shift Key) or a control character (CTRL Key). *Subsequent presses will produce normal characters.*

SCROLL

When set to "LAST CHR" and a character is received in the last display position, the display will scroll up one line with the cursor positioned in the first column of the last line. When set to "LAST CHR+1" and a character is received in the last display position, the display will not scroll until the next displayable character is received. In the latter condition, the cursor is suspended until another displayable character, or escape sequence that manipulates the cursor, is received. The cursor will now be positioned in the second column of the last row. If a control code or escape sequence which can alter the cursor position is received, the cursor is restored at the last position and the pending scroll condition is canceled.

VIEW ANGLE (CONTRAST)

Adjusts the viewing angle of the display to one of sixteen (16) positions around a mid-point which may only be set after RESTORE FACTORY DEFAULTS only.

Viewing angle may also be adjusted without entering the menu by using the CTRL and F5 keys. Holding the CTRL key and pressing the F5 key will adjust the viewing angle through the full range in a circular fashion.

ENABLE BREAK

There are two recognized BREAK functions. A BREAK condition occurs when the transmit data line remains in the SPACE condition for either 250 milliseconds or 3.5 seconds. To generate either of the BREAK functions, ENABLE the BREAK command in the Set-up menu and program a function key with one of two BREAK commands. Programming a function key with hex BB will produce a 250 millisecond BREAK, or programming hex BC will produce a 3.5 second BREAK condition.

SCREEN SIZE

Eight (8) lines of twenty-four (24) characters or sixteen (16) lines of thirty-two (32) characters may be selected.

BACKLIGHT (IF EQUIPPED)

The settings for the display backlight are ON, TIMED and OFF. When set to TIMED the backlighting of the display will automatically shut off after 10 minutes if inactivity. Any key pressed will reset the backlight timer or turn the backlighting on.

MENU MODES

DESTRUCTIVE or NON DESTRUCT. When set to NON DESTRUCT, the contents of the display will be preserved upon exiting menu setup. If SCREEN SIZE is changed, the new screen size will not take effect until power is removed and re-applied. DESTRUCTIVE mode will clear the display upon exiting menu setup and SCREEN SIZE changes will immediately take effect.

VIEW PARAMETER SETTINGS SUMMARY

Hold CTRL and SHIFT, then press F5 to display the current setting of each parameter. The terminal will automatically display each setting for approximately 2 seconds then move to next. The display will be cleared at the start of this routine.

9

SETTING THE PARAMETERS

To enter the set parameters mode, simultaneously hold the CTRL and SHIFT keys while pressing F1. The change menu now appears on the display. The parameter selected and current setting is shown on the top line. To move through the possible values for this parameter, press F1. To move through the list of parameters, press F2 to move forward, or F3 to move backward. Both F4 and F5 return to terminal mode. Exiting by pressing F5 will provide an opportunity to save the selected values in the built-in nonvolatile memory. Press F4 to exit without saving the settings. Exiting without saving the settings will leave any new settings in effect only until power is removed.

PARAMETER SUMMARY

Table 5: Parameter Summary

PARAMETER	OPTIONS (PRESETS IN BOLD)	
BAUD	300-600-1200-2400-4800- 9600-19200	
DATA BITS	7-8	
PARITY	EVEN-ODD-MARK- SPACE-NONE-IGNORE	
STOP BITS	1 or 2	
DISPLAY PE	ENABLE-DISABLE	
REPEAT	SLOW-MEDIUM-FAST NONE	
ENABLE KEY CLICK	ENABLE-DISABLE	
DISABLE KNP FUNCTION	ENABLE-DISABLE	
ENABLE CURSOR	ENABLE-DISABLE	
ENABLE CURSOR BLINK	ENABLE-DISABLE	
DISABLE XON/XOFF	ENABLE-DISABLE	
DISABLE HANDSHAKE	ENABLE-DISABLE	
DISABLE ECHO	ENABLE-DISABLE	
ESCAPE MODE	ANSI-PRIVATE	
CR/LF MODE	NORMAL-NEWLINE	
ENABLE TEST	ENABLE-DISABLE	
DISABLE SHIFT LOCK	ENABLE-DISABLE- CANCEL	
SCROLL ON LAST CHR	LAST CHR - LAST CHR+1	
VIEWING ANGLE =	MIN, 2, 3, 4, 5 , 6, 7, MAX	
DISABLE BREAK CMD	ENABLE-DISABLE	
SCREEN SIZE	24 x 8 or 32 x 16	
MENU MODE	NON DESTRUCT or DESTRUCT	
BACKLIGHT*	ON, TIMED, OFF	

* if equipped

Note: Display always show the status of the Parameter. Example: DISABLE SHIFT LOCK means that the Shift Lock is Disabled.

Section 2

Programmable keys

All Keys may be programmed with any sequence of up to two hundred and twenty (220) characters, including non-printing characters. All programmable key settings are stored in the ProMotion's non volatile memory.

Function Keys

The table below shows the function key characters at delivery. **The notation Hnn indicates hexadecimal notation.**

ESC indicates the ASCII escape character, H1B. **The HEX value is always preceded by a capital H.**

PROMOTION 45 ESCAPE MODE

Table 6: 45 Key Escape Mode

Key	Alone	<u>SHIFT</u>	<u>ANSI</u>	<u>PVT</u>
	(fixed)		CTRL	CTRL
F1	H11	H06	ESC[A	ESC A
F2	H12	H07	ESC[B	ESC B
F3	H13	H08	ESC[C	ESC C
F4	H14	H09	ESC[D	ESC D
F5	H15	H0A	ESC[E	ESC E*

PROMOTION 30 ESCAPE MODE

Table 7: 30 Key Escape Mode

<u>Key</u>	<u>Alone</u>	<u>SHIFT</u>	<u>ANSI</u>	<u>PVT</u>
	(fixed)		CTRL	CTRL
F1/A	А	H11	H01	а
F2/B	В	H12	H02	b
F3/C	С	H13	H03	с
F4/D	D	H14	H04	d
F5/E	Е	H15	H05	e
*Nets that CTDL E5 is an he assessible if CHIET LOCK is and to ENADLE				

*Note that CTRL F5 is only accessible if SHIFT LOCK is set to ENABLE. Holding the CTRL key while pressing F5 will increment the display viewing angle to one of eight (8) levels. This is a circular type of adjustment. After the eight level is reached, the next increment will be level one.

PROMOTION 20 ESCAPE MODE

Table 8: 30 Key Escape Mode

Key	<u>Alone</u>
	(fixed)
F1	А
F2	В
F3	С
F4	D

Section 2

PROGRAMMING THE KEYS

To program any key;

1. Hold the CTRL and SHIFT keys while pressing F2. The terminal then will display the screen shown below.

Figure 9 : Key Output Definition Screen

2. Select which key to program by pressing that key. The terminal will then display the current programmed data for that function key. The terminal will then display the location (Row and Column) of the selected key. Displayable characters are surrounded by single quote marks. Non-printable characters are displayed in hexadecimal notation, with an uppercase H prepended.

3. The menu system that instructs the user with available editing functions for programming keys is shown in the next section.

PROGRAMMING KEYS

14

When YES has been selected the following message will be displayed.

Until the new key definition has been saved the power must not be removed. During this time the voltage levels required to program the memory with the new key change and removal of power will corrupt ALL data.

If this does occur then the LOAD DEFAULTS function will have to be performed.

NOTE: When the 20 key keypad is used there are no Alpha Characters. Refer to the Appendices for the appropriate Decimal number for the desired ASCII code.

Example:

If F1 is being programmed to output a Hex A4, a Decimal 164 will need to be entered during the switch setup.

Section 3 Specifications

Specifications subject to change without notice. **Table 9: ProMotion Specifications**

CPU:	
	87C451
Speed:	11.059 Mhz
POWER	
Voltage:	5V +\- 5%
	7.5 to 12V**
	9V to 28V***
Current:	30 - 35 mA (RS-232, RS-422)
Backlight:	Adds 50 mA
Battery :	NiCAD
Battery Run Time:	up to 48 hours, no backlight

**1 An inexpensive linear regulator (7805A) with a minimum input of 7.5V and an absolute maximum voltage of 35V. It is designed to dissipate 1 watt of power, thereby limiting maximum permissible input voltage according to current draw of terminal.

***2 A switching type voltage regulator with a minimum input of 9V and an absolute maximum voltage of 35V. Input voltage is not dependent on current draw of terminal and may be used with all options of Two Technologies terminals.

MECHANICAL SPECIFICATIONS:

Dimensions	
Height:	7.15.inches (181.6mm)
Width:	4.10 inches (104.1 mm)
Depth:	1.00 inch (25.4 mm)
Weight:	8 ounces (369 grams)
Case:	General Electric Cycolac® ABS
	with retractable hanger
DISPLAY	
Туре:	Reflective/Transreflective LCD
	192 x 128 Pixel Liquid Crystal Display
Standard:	Supertwist Nematic
	Dark Characters on Light Background
	Extended U.S. ASCII Character Set
Format:	8 rows of 24 characters or 16 rows of 32 characters

Section 3

KEYS, SWITCHES and INDICATORS

KEYPAD	
Type:	Membrane or Elastomeric
Layout:	45-key (9 rows x 5 columns)
	30-key (6 x 5) 32-key (8 x 4)
	20-key (5 x 4) 15-key (5 x 3)
Options:	standard and custom keypad layouts
Feedback:	Tactile and Audible
Programmability:	Five function key with fifteen definitions
EMERGENCY STOP	
Туре:	2 pole "press and twist"
Contact rating:	0.5A, 30Vdc
LIVEMAN	
Туре:	3 position, Jokab Model # JSHD2B
Contact rating:	0.5A, 30Vdc

ENVIRONMENTAL

Storage temperature:	-20^{0} to $+ 70^{0}$ C
Operating temperature:	$0 \text{ to} + 50^{0} \text{C}$
Humidity:	5% -90% (non-condensing)

CUSTOM OPTIONS

Custom Firmware Custom keypad graphics Custom I/O interface Custom and molded-in logos Custom default settings Custom case color

INTERFACE

Type: Handshake: Data Rates:

Parity: Control Bits: Connectors:

2

RS-232, RS-422, RS-485 or CMOS/LSTTL level RTS,CTS (RS-232) 300 to 9,600 bps 19,200 and 57,600 Even, Odd, Mark, Space, Ignore 1 Start, 1 Stop Permanent or custom cables
Section 4 Operation

4.1 Controls and Indicators

Item	Name	Description
1.	LCD DISPLAY	Type: Reflective/Transreflective LCD
		192 x 128 Pixel Liquid Crystal Display
		Standard: Supertwist Nematic
		Optional: Backlit Supertwist Nematic
		Dark Characters on Light Background
		Extended U.S. ASCII Character Set
		Format: 8 rows of 24 characters or 16 rows of 32 charac-
		ters

Item	Name	Description
2.	KEYPAD	Membrane or Elastomeric 45-key (9 rows x 5 columns) 30-key (6 x 5) 32-key (8 x 4) 20-key (5 x 4) 15-key (5 x 3) Tactile and Audible Feedback Programmable (Five) function key with fifteen defini- tions.
3.	POWER and HOST INTERFACE CONNECTOR	The interface is via a permanent cable for communica- tions and E-Stop and LiveMan Switches.
4.	E-Stop	Push off and twist on switch
5.	LiveMan	3 position switch. Center is active. Switch out or all the way in is off.

ProMotion Safety Switches

LiveMan Operation

The Liveman switch has three positions as shown below:

OFF Switch Released

Center Position

OFF Switch Fully Depressed

Figure 4.10: Liveman Switch Detail

E-Stop Operation

The LAMP is only used for the illuminated switch. The terminals are not present on non-lighted switches

The E-Stop switch is made up of two normally closed switches as shown above. Pressing the switch opens both sets of contacts. See SEction 1 for wiring details.

4.2 Host Control of the Terminal

The ProMotion has been designed to allow it to be controlled by the device to which it is connected, referred to in this manual as the host.

By sending the terminal special character sequences, the host can move the cursor to any position on the display, clear selected regions of the display, sound the beep, alert or key click, program the function keys and set any of the operating parameters.

Because all of these command sequences begin with the ASCII escape character, they are ordinarily called escape sequences.

There are two separate sets of escape sequences built into the termial. The set in use is determined by the setting of the ESCAPE MODE parameter.

<u>ANSI</u>

When set to ANSI, the terminal recognizes a command set compatible with the American National Standards Institute standard X3.64.

PRIVATE

When set to PRIVATE, the terminal recognizes a smaller, nonstandard set of commands. The host can change the ESCAPE MODE at any time by means of an escape sequence.

In the following description of escape sequences, ESC is used to indicate the ASCII escape character, hex 1B. Any occurrence of a numeric parameter is indicated by the notation Pn. Escape sequences are required to be sent to the terminal exactly as shown, with no embedded spaces permitted.

ANSI MODE HOST COMMANDS

If the ESCAPE MODE parameter is set to ANSI, the terminal recognizes the following commands.

CURSOR MOVEMENT COMMANDS

In these sequences, Pn indicates an optional repeat count. If absent, the count is taken to be 1. The cursor will not move beyond the start or end of a line, and will not cause the display to scroll.

Cursor up	ESC [Pn A
Cursor down	ESC [Pn B
Cursor right	ESC [Pn C
Cursor left	ESC [Pn D
Cursor position	ESC [Pr ; Pc f
Cursor position	ESC [Pr ; Pc H

In these sequences, Pr is the row number and Pc is the column number of the target cursor location. Row and column numbers are absolute, with Pr = 1, Pc = 1 representing the upper left corner of the display.

Cursor home	ESC [f
Cursor home	ESC [H
Cursor home & Clear Display	ESC [1 s

The first two forms of this command simply move the cursor to the home position. Note that these commands are functionally equivalent to the Cursor Position command with the row and column both set to 1. The third form of the command moves the cursor to the home position and clears the display.

Save cursor position	ESC [s
Restore cursor position	ESC [u

The save cursor position command causes the terminal to save the current cursor position. The cursor can subsequently be returned to that position by sending the restore position command. The position restored will always be the one most recently saved. Cursor position is saved in RAM memory and will be lost when power is removed.

ERASING

Cursor to end of line		ESC [K
Start of line to cursor	r	ESC [1 K
Entire line		ESC [2 K
Cursor to end of disp	olay	ESC [J
Start of display to cu	rsor	ESC [1 J
Entire display		ESC [2 J
Entire line Cursor to end of disp Start of display to cu Entire display	olay rsor	ESC [2 K ESC [J ESC [1 J ESC [2 J

Note that all erase commands include the character at the cursor location. The cursor position is not altered.

CHARACTER ATTRIBUTES

Set Blink Attribute	ESC[2s
Clear Blink Attribute	ESC[3s
Set Reverse Video Attribute	ESC[7;m
Set Blink Attribute	ESC[5;m
Normal (Clear All Attributes)	ESC[0;m

Character Blink and Reverse Video are character attributes. Characters written subsequent to the setting or clearing of attributes will assume the new attribute characteristics. When Reverse Video is set, functions which clear any portion of the screen (e.g. scrolling and erase line) will use a solid fill character.

<u>SOUNDS</u>	
Short Bell	ESC [0 q
Long Bell	ESC [1 q
Alert	ESC [2 q
Key Click	ESC [3 q

These commands cause the terminal to emit the indicated sound through the built-in speaker. There is no "buffering" of commands which generate sounds. Since these sounds can last many character times, to produce a properly spaced chain of any of these sounds the host must delay a short time between issuing these commands. **<u>RESET</u>** Reset Terminal

This command causes the terminal to be reset. This is equivalent to removing and reapplying operating power. Parameter settings will be loaded from the nonvolatile memory. Then, if the TEST parameter is set to ENABLE, the confidence test will be run.

REPORTS

Device Status	ESC [4 n
Device Status	ESC [5 n

The first form causes the terminal to perform the built-in confidence test, and report the result. The second form merely reports the result of the last confidence test run since the terminal was turned on. A response of ESC [0 n indicates that the terminal passed the confidence test. A response of ESC [3 n indicates that the confidence test has not run, or that a malfunction was detected.

Cursor position

ESC [6 n

Causes the terminal to send the current location in the form ESC[Pr;PcR where Pr is the row number and Pc is the column number. E.g. ESC[1;1R represents the upper left corner of the display, and ESC[4;21R represents the cursor position after a character is written in row 4 and column 20 when SCROLL is set to 81st character.

Device Attributes ESC [c

Causes the terminal to send a device attributes string. The terminal responds with ESC [? 8; 4 c.

Device ID

ESC [p

Causes the terminal to send an identifier string. The Terminal responds with:

ESC[0xPRM45XNNNN ESC[1x for the ProMotion 45 key ESC[0xPRM30XNNNN ESC[1x for the ProMotion 30 key

Where NNNN is replaced with the four byte hexadecimal checksum of the terminals' program memory.

PARAMETER MODIFICATION

All of the settable operating parameters may be changed by the host through escape sequences. In addition to those commands which affect a single parameter, there are commands which can be used to change all of the parameter settings at one time, and to cause the terminal to report the current settings. Refer to the manual section which describes the parameters for information on the effect of these commands.

KEY REPEAT

Enable Key Repeat	ESC [? 8 h
Disable Key Repeat	ESC [? 81

The first command turns on the key repeat, using the most recent rate setting. The second command turns off the key repeat. The final character in this command is a lowercase L.

KEY CLICK

Enable Key ClickESC [0 tDisable Key ClickESC [1 t

These commands set the KEY CLICK parameter. The first sets it to ENABLE. The second sets it to DISABLE.

KNP FUNCTION

Enable KNP Function	ESC [2 t
Disable KNP Function	ESC [3 t

These commands set the KNP FUNCTION parameter. The first sets it to ENABLE. The second sets it to DISABLE.

CURSOR

Enable Cursor	ESC [4 t
Disable Cursor	ESC [5 t
Blinking Block Cursor	ESC [3 ; 0 z
Steady Block Cursor	ESC [3 ; 1 z
Invisible Cursor	ESC [3 ; 4 z

These commands set the CURSOR parameter. The first sets it to ENABLE. The second sets it to DISABLE. The ESC [3; 0 z and ESC [3; 1 z perform the same function as the CURSOR BLINK commands listed below.

CURSOR BLINK

Enable Cursor Blink	ESC [6 t
Disable Cursor Blink	ESC [7 t

These commands set the CURSOR BLINK parameter. The first sets it to ENABLE. The second sets it to DISABLE.

LED CONTROL

ESC [6q	LED 1 Off
ESC [7q	LED 1 On
ESC [8q	LED 2 Off
ESC [9q	LED 2 On
ESC [10q	LED 3 Off
ESC [11q	LED 3 On
ESC [12q	LED 4 Off
ESC [13q	LED 4 On
ESC [16q	All Off

On Applicable models equipped with optional LED indicators, the above sequences are used to control the LED's

ESCAPE MODE Switch to Private Mode ESC [? 21

This command sets the ESCAPE MODE parameter to PRIVATE. This causes the terminal to switch from recognizing ANSI compatible commands to recognizing private commands. The final character in this command is a lowercase L.

<u>CR/LF MODE</u>	
Normal Mode	ESC [2 0 1
Newline Mode	ESC [2 0 h

These commands set the CR/LF MODE parameter. The first sets it to NORMAL. The final character in this command is a lowercase L. The second command sets CR/LF MODE to NEWLINE.

SETTING ALL PARAMETERS

Set All Parameters	ESC [1 z
Set All Parameters	ESC [2 z

These commands can be used to set all of the terminals operating parameters with a single command. The first form of the command allows the parameters to be changed, but the new settings are not written to the nonvolatile memory.

This is equivalent to leaving the set parameters mode with the QUIT key. The second form of the command allows the parameters to be changed and saved. (If modifications have been disabled parameters cannot be set)

The format of these two commands is the same. The command is followed by a list of parameter values, separated by semicolons. The list is terminated by the escape sequence ESC [0 z. The complete form of the first command is:

ESC[1zP1;P2;P3;P3A;P4;P5;P6;P7;P8;P9;P10;P11;P12;P13;P14; P15;P16;P17;P18;P19 ESC[0 z

Each of the twenty-two parameters (note P3A) specified by this sequence corresponds to one of the settable parameters. The order of the parameters in the list is fixed. One digit or letter is used to specify the setting of each parameter. The table on page 24 shows the order of the parameters. The underlined character in the OPTIONS column is the one used to set that value.

Any or all of the parameters may be omitted. This is done by using the semicolon as a placeholder except in the case of P3A (STOP BITS). P3A is only significant if specified.

P3A has the following characteristics:

1) P3A can not be substituted with a place holder. Entering a semicolon as a place holder in the P3A position will be interpreted as a place holder for P4.

2) P3A may be specified even if P3 has a place holder.

3) The number of stop bits are automatically set to one (1) if eight data bits and any parity is selected, and will be set to two (2) if seven data bits and no parity is selected. The setting of P3A will have no effect in these two cases.

Also, sending the escape sequence ESC [0 z after any parameter value will terminate the sequence. Any parameter value not specified will remain unchanged.

After the terminal has processed the command, it will respond by reporting the complete list of parameters as they are set.

This list is presented in simple ASCII format, using the same form as the settings are shown in the display during Set Parameters mode. Each setting is followed by a carriage return and linefeed.

The escape sequence ESC [$0 \times precedes$ the settings, and ESC [$1 \times precedes$ the end of the response. To cause the terminal to send the current settings without changing any values, simply send ESC [$1 \times precedent product pro$

This is just the first form of the Set All Parameters command with no values specified.

SET PARAMETERS COMMAND TABLE

Table 10: Set Parameters Commands

PARAMETER	NAME	OPTIONS
P1	BAUD	<u>300-<u>6</u>00-<u>1</u>200-<u>2</u>400-<u>4</u>800-<u>9</u>600-192<u>0</u>0</u>
P2	DATA BITS	<u>7</u> or <u>8</u>
P3	PARITY	<u>E</u> VEN- <u>O</u> DD- <u>M</u> ARK- <u>S</u> PACE- <u>N</u> ONE-
		<u>I</u> GNORE
P3A	STOP BITS	<u>1</u> or <u>2</u>
P4	DISPLAY PE	<u>E</u> NABLE- <u>D</u> ISABLE
P5	REPEAT	<u>S</u> LOW- <u>M</u> EDIUM- <u>F</u> AST <u>D</u> ISABLE
P6	KEY CLICK	<u>E</u> NABLE- <u>D</u> ISABLE
P7	KNP FUNC-	<u>E</u> NABLE- <u>D</u> ISABLE
	TION	
P8	CURSOR	<u>E</u> NABLE- <u>D</u> ISABLE
P9	CURSOR	<u>E</u> NABLE- <u>D</u> ISABLE
	BLINK	
P10	XON/XOFF	<u>E</u> NABLE- <u>D</u> ISABLE
P11	HANDSHAKE	<u>E</u> NABLE- <u>D</u> ISABLE
P12	ECHO	<u>E</u> NABLE- <u>D</u> ISABLE
P13	ESCAPE	<u>A</u> NSI- <u>P</u> RIVATE
	MODE	
P14	CR/LF MODE	<u>N</u> ORMAL-NEW <u>L</u> INE
P15	TEST	<u>E</u> NABLE- <u>D</u> ISABLE
P16	SHIFT LOCK	<u>E</u> NABLE- <u>D</u> ISABLE
P17	SCROLL ON	<u>0</u> (LAST CHR) or <u>1</u> (LAST CHR +1)
P18	VIEWING	<u>1</u> (MIN) , <u>2</u> , <u>3</u> , <u>4</u> , <u>5</u> , <u>6</u> , <u>7</u> , <u>8</u> (MAX)
	ANGLE	
P19	BREAK COM-	<u>E</u> NABLE- <u>D</u> ISABLE
	MAND	
P20	SCREEN SIZE	$\underline{0}$ (32x16) or $\underline{1}$ (24x8)
P21	MENU MODE	NON DESTRUCTor DESTRUCT

Example:

Esc[1z9;8;E;1;D;F;E;D;E;E;D;E;E;A;N;E;D;0;8;D;0;NEsc[0z P1......P21

LOADING DEFAULT VALUES

Set All Defaults ESC [3 z

This command resets all of the parameter values and function key strings to their delivery state, and saves them. This command accepts no parameters. It must be followed by the escape sequence ESC [0 z. (If modifications have been disabled ,defaults cannot be loaded.)

PROGRAMMING KEYS

Program FKEY	ESC [5 z
Report FKEY settings	ESC [4 z

Any of the keys (except SHIFT and CTRL) may be programmed to transmit a single character or a string of characters. The complete form of the Program KEY command is shown below. (If modifications have been disabled, CTRL, SHIFT, F3 AT POWER UP, function keys cannot be programmed.)

ESC[5zKn;C1;C2;C3; ...CnESC[0z

The Kn parameter selects the key number (in ASCII Hexadecimal format) to be programmed.

Key numbering is shown in the KEY NUMBER CHART, see page 13 in this section.

Keys are numbered starting with 01H corresponding to the upper left corner of the keypad. Each column movement to the right increases the key number by one. Each row movement down increases the key number by five. The offset 2DH (45 decimal) must be added for the Shifted key programming. Similarly, 5AH (90 decimal) for Control, and 87H (135 decimal) for Shifted & Control must be added. This is also true with a 30 key keypad.

Each character represented by C1 through Cn must also be specified in ASCII Hexadecimal format. For example, the character 'T' is represented by the Hex code 54. The ASCII characters 5 & 4 must be used to specify the character 'T'. Sending the Hex code 54 instead of the ASCII representations of 5 & 4 will be interpreted as an error. The list must be confined to the limitations of available Key memory. Key memory is capable of storing 222 bytes of key data. Each key that is programmed to a string or value (other than its default) will require two

bytes of memory in addition to the number of characters in its corresponding string. The only way to free memory, is to re-program keys to their default settings.

NOTE: All key programming is returned to default setting (and all memory is freed) when power on defaults are loaded or the escape sequence for default load is given.

Any key programmed with no character data will have no output (as well as no key click) and is effectively disabled. Two bytes of key memory are required for any disabled key.

If an error is encountered during the programming of a key, an error code (ASCII Hex) is returned and the programming operation terminated with NO modification to Programmable KEY memory.

ERROR CODE

01	=Kn improper
02-F0H	=Cn-1 format error
FEH	=Not Enough memory available
FFH	=Key memory data corrupted

IMPORTANT NOTE: When the final terminator **ESC[0z** is successfully received, the programming information is inserted into the EEPROM KEY data storage area. To allow for variable length strings, this data area is dynamically allocated. For this reason if power is removed within .75 seconds (the maximum time to copy KEY image to EEPROM) of the final terminator (ESC[0z), all Programmable KEY data may become corrupted, subsequently requiring a Default Load.

To report Programmable KEY settings, the second form of the Programmable KEY command (ESC[4z) is used. The report starts immediately and has the following format:

ESC[0xKn;C1;C2;...CnKn;C1;C1;...CnESC[1x

Only keys that have been programmed with other than default character codes will be reported.

EXAMPLE:

Program key in 2nd column, 3rd row to transmit the string "TESTING"

ESC[5zK0C;54;45;53;54;49;4E;47ESC[0z

KEY NUMBER CHARTS

		Col 1	Col 2	Col 3	Col 4	Col 5
Indicates 30	Row 1	01H	02H	03H	04H	05H
Kev Data	Row 2	06H	07H	08H	09H	0AH
	Row 3	0BH	0CH	0DH	0EH	0FH
	Row 4	10H	11H	12H	13H	14H
	Row 5	15H	16H	17H	18H	19H
	Row 6	1AH	1BH	1CH	1DH	1EH
	Row 7	1FH	20H	21H	22H	23H
	Row 8	24H	25H	26H	27H	28H
	Row 9	29H	2AH	2BH	2CH	2DH
S						
ınd		Col 1	Col 2	Col 3	Col 4	Col 5
inc	Row 1	2EH	2FH	30H	31H	32H
11	Row 2	33H	34H	35H	36H	37H
S	Row 3	38H	39H	3AH	3BH	3CH
AS	Row 4	3DH	3EH	3FH	40H	41H
ot .	Row 5	42H	43H	44H	45H	46H
u .	Row 6	47H	48H	49H	4AH	4BH
ure	Row 7	4CH	4DH	4EH	4FH	50H
	Row 8	51H	52H	53H	54H	55H
The ige	Row 9	56H	57H	58H	59H	5AH
r. 1 Pa						
lnc ion		Col 1	Col 2	Col 3	Col 4	Col 5
es e	Row 1	5BH	5CH	5DH	5EH	5FH
ion SS	Row 2	60H	61H	62H	63H	64H
at his	Row 3	65H	66H	67H	68H	69H
o t	Row 4	6AH	6BH	6CH	6DH	6EH
r t	Row 5	6FH	70H	71H	72H	73H
ka efe	Row 6	74H	75H	76H	77H	78H
Re Ro	Row 7	79H	7AH	7BH	7CH	7DH
fer	Row 8	7EH	7FH	80H	81H	82H
e	Row 9	83H	84H	85H	86H	87H
rs						
nbe		Col 1	Col 2	Col 3	Col 4	Col 5
m	Row 1	5BH	5CH	5DH	5EH	5FH
ви	Row 2	60H	61H	62H	63H	64H
sa	Row 3	65H	66H	67H	68H	69H
μL	Row 4	6AH	6BH	6CH	6DH	6EH

Unshifted

SECTION 4

~

Shifted

Control

Shifted & Control

Section 4

MAN0328 Rev. A 7/18/01

70H

75H

7AH

7FH

84H

6FH

74H

79H

7EH

83H

Row 5

Row 6

Row 7

Row 8

Row 9

Operation, Host Control 7

73H

78H

7DH

82H

87H

72H

77H

7CH

81H

86H

71H

76H

7BH

80H

85H

ANSI Escape Sequence Table

Table 11: ANSI Escape Sequence Table

SEQUENCE	DESCRIPTION
ESC[?21	Switch To Private Mode
ESC[?81	Disable Key Repeat
ESC[?8h	Enable Key Repeat
ESC[0;m	Clear Reverse Video Attributes
ESC[5;m	Set Character Blink Attribute
ESC[7;m	Reverse Video Attribute
ESC[p	Device Id (Name & Check Sum)
ESC[s	Save Cursor Position
ESC[1;0z	Set Screen to 32 x 16
ESC[1;1z	Set Screen to 24 x 8
ESC[3;0z	Cursor Attributes (Blink)
ESC[3;1z	Cursor Attributes (Steady)
ESC[3;4z	Cursor Attributes (Invisible)
ESC[2s	Set Character Blink Attribute
ESC[3s	Clear Blink Attribute
ESC[0t	Enable Key click
ESC[1t	Disable Key Click
ESC[2t	Enable KNP Function
ESC[3t	Disable KNP function
ESC[4t	Enable Cursor
ESC[5t	Disable Cursor
ESC[6t	Enable Cursor Blink
ESC[7t	Disable Cursor Blink
ESC[u	Restore Cursor Position
ESC[v	Adjust LCD Contrast*
*Of the 16 ha	rdware settings, only 8 may be adjusted via
host mode but	will provide the same range of contrast con-
trol just more	course.
ESC[0q	Short Bell

Table 11: ANSI Escape Sequence Table

SEQUENCE	DESCRIPTION
ESC[1q	Long Bell
ESC[2q	Alert
ESC[3q	Key Click
ESC[0z	Confirm Default Load (Must Follow
	ESC[3z)
ESC[1z	Set All Parameters
ESC[2z	Set All Parameters & Save To NVram
ESC[3z	Set All Defaults & Save To NVram
ESC[4z	Report key Programming
ESC[5z	Program key & Custom Characters
ESC[201	CR = CR (normal)
ESC[20h	CR = CRLF (newline)
ESC[4n	Do Selftest & Report Results
ESC[5n	Report If Selftest Passed
ESC[6n	Report Cursor Position
ESC[J	Erase Cursor To End Of Display
ESC[1J	Erase Start Of Display To Cursor
ESC[2J	Erase Entire Display
ESC[K	Erase from Cursor To End Of Line
ESC[1K	Erase Start Line To Cursor
ESC[2K	Erase Entire Line
ESC[c	Send Device Attributes
ESC[PnA	Cursor Up Pn Times (Or 1 If Pn Absent)
ESC[PnB	Cursor Down Pn Times (Or 1 If Pn Absent)
ESC[PnC	Cursor Right Pn Times (Or 1 If Pn Absent)
ESC[PnD	Cursor Left Pn Times (Or 1 If Pn Absent)

Table 11: ANSI Escape Sequence Table

ESC[EClear Display & Home CursorESC[HPosition Cursor At HomeESC[fPosition Cursor At Home (Same As Above)ESC[Pr;PcHPosition Cursor At Pr, PcESC[P P fPosition Cursor At Pr, Pc	SEQUENCE	DESCRIPTION
ESC[HPosition Cursor At HomeESC[fPosition Cursor At Home (Same As Above)ESC[Pr;PcHPosition Cursor At Pr, PcESC[Pr P fPosition Cursor At Pr, Pc	ESC[E	Clear Display & Home Cursor
ESC[fPosition Cursor At Home (Same As Above)ESC[Pr;PcHPosition Cursor At Pr, PcESC[Pr P fP it C At P P (S A Al P)	ESC[H	Position Cursor At Home
ESC[Pr;PcH Position Cursor At Pr, Pc	ESC[f	Position Cursor At Home (Same As Above)
$\mathbf{\Gamma} \mathbf{G} \mathbf{G} \mathbf{D} \mathbf{D} \mathbf{G} \mathbf{D} \mathbf{G} \mathbf{A} \mathbf{A} \mathbf{D} \mathbf{D} \mathbf{G} \mathbf{A} \mathbf{A} 1 \mathbf{D}$	ESC[Pr;PcH	Position Cursor At Pr, Pc
ESC[Pr;Pci Position Cursor At Pr; Pc (Same As Above)	ESC[Pr;Pcf	Position Cursor At Pr; Pc (Same As Above)
ESCc Reset Terminal	ESCc	Reset Terminal
ESC [8+ Backlight ON**	ESC [8+	Backlight ON**
ESC [9+ Backlight OFF**	ESC [9+	Backlight OFF**

** if equipped

Table 12: ANSI LED CONTROLS

ESCAPE SEQ.	DESCRIPTION
ESC [6q	LED 1 Off
ESC [7q	LED 1 On
ESC [8q	LED 2 Off
ESC [9q	LED 2 On
ESC [10q	LED 3 Off
ESC [11q	LED 3 On
ESC [12q	LED 4 Off
ESC [13q	LED 4 On
ESC [16q	All Off

4.3 Private mode (host commands)

If the ESCAPE MODE parameter is set to PRIVATE, the terminal recognizes the following commands.

CURSOR MOVEMENT COMMANDS

Cursor up	ESC A
Cursor down	ESC B
Cursor right	ESC C
Cursor left	ESC D

In the above sequences, the cursor moves one position in the indicated direction. The cursor will not move beyond the start or end of a line, and will not cause the display to scroll.

CURSOR POSITION COMMANDS

Cursor position ESC Y Pr Pc

In the above sequence the Pr is the row number and Pc is the column number of the target cursor location. These parameters are formed by adding hexadecimal 1F to the row and column numbers. Row and column numbers are absolute, with row 1, column 1 (Pr=H20,Pc=H20)* representing the upper left corner of the display.

*Note that the hexadecimal number is represented by the ASCII character which is used in the string to position the cursor. (see chart next page)

Examples: ESCY!) Will send the cursor to Row 2, Column 10 ESCY#0 Will send the cursor to Row 4, Column 17 ESCY!+ Will send the cursor to Row 2, Column 12

Cursor home

ESC H

Note that this command is functionally equivalent to the Cursor Position command with Pr = H20 and Pc = H20.

FOR ROW SPECIFICATION

Row	Hex	ASCII	Row	Hex	ASCII
1	20	SP	9	28	(
2	21	!	10	29)
3	22	دد	11	2A	*
4	23	#	12	2B	+
5	24	\$	13	2C	,
6	25	%	14	2D	-
7	26	a	15	2E	
8	27	۲	16	2F	/
FOR COI	LUMN SPE	CIFICATION	_	•	
Col	Hex	ASCII	Col	Hex	ASCII
1	20	SP	17	30	0
2	21	!	18	31	1
3	22		19	32	2
4	23	#	20	33	3
5	24	\$	21	34	4
6	25	%	22	35	5
7	26	&	23	36	6
8	27	۲	24	37	7
9	28	(25	38	8
10	29)	26	39	9
11	2A	*	27	3A	:
12	2B	+	28	3B	;
13	2C	,	29	3C	<
14	2D	-	30	3D	=
15	2E		31	3E	>
16	2F	/	32	3F	?

ERASING

Cursor to end of line	ESC K
Cursor to end of display	ESC J
Line containing cursor	ESC M
Clear display and home	ESC E

Note that the erase commands include the character at the cursor location. The first three do not alter the cursor position.

CHARACTER ATTRIBUTES

Begin Blink	ESC W	(or CTRL Z)
End Blink	ESC X	(or CTRL X)
Begin Reverse Video	ESC w	(or CTRL V)
End Reverse Video	ESC x	(or CTRL W)

Character Blink and Reverse Video are character attributes. Characters written subsequent to the setting or clearing of attributes will assume the new attribute characteristics. When Reverse Video is set, functions which clear any portion of the screen (e.g. scrolling and erase line) will use a solid fill character.

SOUNDS

Short Bell	ESC T
Long Bell	ESC L
Alert	ESC Q

These commands cause the terminal to emit the indicated sound through the built-in speaker. There is no "buffering" of commands which generate sounds. Since these sounds can last many character times, to produce a properly spaced chain of any of these sounds the host must delay a short time between issuing these commands.

REPORTS

Identify ESC Z Causes the terminal to send an identifier string. The ProMotion responds with

PRM45 XM NNNN	ProMotion 45
PRM30 XM NNNN	ProMotion 30
PRM20 XM NNNN	ProMotion 20

Where NNNN is replaced by a four-byte hexadecimal checksum of the terminal's program memory .

MODE SWITCHING

Switch to ANSI Mode

ESC <

This command causes the terminal to switch from recognizing private commands to recognizing ANSI compatible commands.

PRIVATE ESCAPE SEQUENCE TABLE

Table 13: Private Esc Sequence Table

SEQUENCE	DESCRIPTION	
ESC A	Cursor Up	
ESC B	Cursor Down	
ESC C	Cursor Right	
ESC D	Cursor Left	
ESC d	Set Display Size To 24x8	
ESC E	Clear Display & Home Cursor	
ESC F	Cursor On	
ESC G	Cursor Off	
ESC H	Cursor Home	
ESC I	Adjust Viewing Angle	
ESC J	Erase To End Of Screen	
ESC K	Erase To End Of Line	
ESC L	Long Bell	
ESC M	Erase Line	
ESC N	Enable KNP	
ESC O	Disable KNP	
ESC P	(RESERVED)	
ESC Q	Alert Sound	
ESC R	Enable Cursor Blink	
ESC S	Disable Cursor Blink	
ESC s	Set Display Size To 32x16	
ESC T	Short Tone	
ESC U	Enable Key Click	
ESC V	Disable Key Click	
ESC W	Set Blink Attribute	
ESC w	Set Reverse Video Attribute	
ESC X	Clear Blink Attribute	
ESC x	Clear Reverse Video Attribute	

SEQUENCE	DESCRIPTION
ESC Y Pr pc	Position Cursor At Pr,Pc (Row1,Col1 = H20,H20)
ESC Z	Report Device ID
ESC <	Switch To ANSI Mode
ESC f	Backlight OFF**
ESC n	Backlight ON**

Table 13: Private Esc Sequence Table

** if equipped

ADDITIONAL CONTROL CODES

Table 14: Additional Control Codes

CODE	HEX	DEC.	ASCII	FUNCTION
CTRL+G	07	7	BEL	Sounds Bell
CTRL+H	08	8	BKSP	Back Space Cursor
CTRL+J	0A	10	LF	Line Feed
CTRL+K	0B	11	VT	Cursor Down
CTRL+M	0D	13	CR	Cursor Left to Col 1
CTRL+V	16	22	SYN	Sets Reverse Video Attribute
CTRL+W	17	23	ETB	Clears Reverse Video Attribute
CTRL+X	18	24	CAN	Clears Blink Attribute
CTRL+Z	1A	26	SUB	Sets Blink Attribute
DEL	7F	127	DEL	Delete Character At Cursor

4.4 Control Character Commands

<u>CONTROL</u>	<u>DEC</u>	<u>HEX</u>	<u>ASCII</u>	FUNCTION
CTRL + E	5	05H	ENQ	Enquire
CTRL + G	7	07H	BEL	Sounds Bell
CTRL + H	8	08H	BS	Back Space Cursor
CTRL + J	10	0AH	LF	Line Feed
CTRL + K	11	0BH	VT	CURSOR DOWN
CTRL + M	13	0DH	CR	Cursor Left to Column 1
DEL	127	7FH	DEL	Delete Char. At Cursor

Table 15: Control Characters

Example:

When Ctrl+E (DEC 5) is sent to the ProMotion, it will answer with an ASCII Acknowledge ACK (06H) in standard mode and an ASCII DLE (10H) in Robot Mode.

The ProMotion will only respond to the above CTRL codes Any other CTRL code will be ignored.

Extended operations

Note: In the command summary the H preceding the code indicates HEX.

EXTENDED FUNCTION KEY COMMAND SUMMARY HBF = Toggle Serial Outport Command (Defaults to serial output)

HBE = Toggle Display Echo Command (Defaults to setting of ECHO in settings Menu)

HBD(nn) = Pause until (nn) Character Received Command Wait for (nn) character from serial input.

HBC = Execute Long Break Command (3.5 seconds)

HBB = Execute Short Break Command (250mS)

HBA(nn) = Branch Always command To a LABEL (nn).

HB9 = Assert Handshake Out Equals +V Command (Only active if handshaking setting in menu is set to DISABLE).

HB8 = Assert Handshake Out Equals -V Command

(Only active if handshake setting in menu is set to DISABLE).

HB7 = Pause Until Handshake Line Input +V (Only active if handshake setting in menu is set to DISABLE).

HB6 = Pause Until Handshake Line Input -V (Only active if handshake setting in menu is set to DISABLE).

HB5 (nn) = Branch Conditional command Branch to LABEL (nn) if handshake line into ProMotion terminals equals -V. If branch is false, key execution continues at the character following the branch label (nn). (Only active if handshake setting in menu is set to DIS-ABLE)

HB4 (nn) = The Label Designator Command for label (nn)

HB3, HB2, HB1, HB0= Reserved, do not use

EXTENDED PROGRAMMABLE KEY COMMAND USAGE

In order to utilize the extended Programmable KEY commands, you must first ENABLE the BREAK command. BREAK may be enabled either throughout the setup menu or through the serial set-up parameter string.

Extended Programmable KEY commands are special codes embedded in the KEY data string. When enabled, they modify the way programmed KEY strings are interpreted. Extended KEY commands may be assimilated into the following categories:

Break functions-	HBB, HBC
Output controls-	HBF, HBE
Pause commands-	HBD, HB7, HB6
Branching Commands-	HBA, HB5
Handshake out line manipula	ation-HB9, HB8

BREAK FUNCTIONS

Break commands momentarily place the transmit line into a condition known as Spacing (for 3.5 seconds if command HBC is used and 250mS if HBB is used). When no data is being transmitted, the normal condition of the transmit line is known as Marking. Spacing is the opposite of Marking. Some types of host equipment may recognize a break as a special command (such as reset).

OUTPUT CONTROL

Normally, data from the Programmable KEY string is transmitted serially. If the setting of the ECHO function is ENABLED, data is also output to the display.

The Toggle Display Echo Command (HBE) is a toggle function which will allow any or all parts of a Programmable KEY string to be both transmitted and displayed simultaneously. With the terminal echo disabled, all characters after the HBE command will be sent to both the display and the serial port. Remember that is a toggle function and will operate according to the state of the terminal's ECHO function. Escape sequences echoed to the display that do not require serial output are processed normally. Sequences which do require serial output are stored in the receiver buffer until the end of the current KEY string execution.

The Toggle Serial Output Command (HBF) is a toggle function which will prevent characters within a Programmable KEY string from being transmitted. This may be used in conjunction with the Toggle Echo Command where certain parts of strings which are Echoed to the display will not be transmitted (e.g. An application requires that a "RUN" command string be sent to the host while a message explaining the command be sent to the display. In the following example, the command string sent to the host consists of the following string "#STRT*9" while the message sent to the display should read "RUN-NING". Key 01 is programmed with the Following:

#STRT*09 BF BE RUNNING BE BF

When key 01 (upper left hand corner) is pressed, the string "#STRT*09" is transmitted to the host. The command HBF turns off output to the serial port while the next command HBE causes the string "RUNNING" to be sent to the display only and not to the serial port. The trailing commands HBE and HBF enables transmission and disables echo. If no other KEY operations follow the "RUNNING string, the trailing toggle commands are not necessary.

PAUSE COMMANDS

The output of the Programmable KEY string may be programmed to pause either for a specific character to be received, or a specific handshake line input status.

Pause Until Handshake Line Input +V (HB7) will cause Programmable KEY output to suspend until the ProMotion's handshake line (at the interface connector) is at +V (valid handshake line input voltage levels for RS-232 are +3V to +30V and -3V to -30V). A special waiting cursor consisting of horizontal bars ()) is displayed in place of the regular cursor after approximately one half second of waiting. The suspend condition may be canceled by pressing CTRL and F5 simultaneously. If the handshake line was already at +V, no delay in output would be encountered. This command is only recognized if the HANDSHAKE setting is set to DISABLE. **Pause Until Handshake Line Input -V (HB6)** will cause Programmable KEY output to suspend until the ProMotion's handshake line (at the interface connector) is at -V (valid handshake line input voltage levels for RS-232 are +3V to +30V and -3V to -30V). A special waiting cursor consisting of horizontal bars () is displayed in place of the regular cursor after approximately one half second of waiting. The suspend condition may be canceled by pressing CTRL and F5 simultaneously. If the handshake line was already at -V, no delay in output would be encountered. This command is only recognized if the HANDSHAKE setting is set to DISABLE.

Pause Until (nn) Character Received Command (HBD) will

cause Programmable KEY output to suspend until the following value (nn) is received by the ProMotion. This command may be useful in a number of applications where the terminal must wait for a certain character from the host before continuing. e.g. Note: [CR] = H0D

- 1) Send the string "STOP[CR]" to the host.
- 2) Wait for the host to send "STOPPED" back to terminal.
- 3) Send the string "A=A+1[CR]" to host.
- 4) Wait for host to send ">" prompt.
- 5) Send the string "RUN [CR]."

The following string programmed into a Programmable Key will execute the example above:

S T O P **0D BF BD** D **BF** A = A + 1 **0D BF BD** > **BF** $R \cup N$ **0D**

Note that Serial output is toggled off (HBF) prior to the pause commands (HBD). When the pause command has been executed, the wait character is echoed to the serial port/display unless toggled off. Note: The seventh character "D" is the last character in the word STOPPED. If necessary, you may verify the entire string with the following string:

BD 'S' **BD** 'T' **BD** 'O' **BD** 'P' **BD** 'P' **BD** 'E' **BD** 'D'

SECTION 4

Whenever the terminal is waiting for the reception of a character, a special cursor consisting of horizontal bars (\equiv) will flash in place in of the regular cursor. The PAUSE command may be aborted at any time by simultaneously pressing the CTRL and F5 keys. If you are waiting to verify an entire string as in the example above, you must press the CTRL+F5 combination seven (7) times.

BRANCHING COMMANDS

Branching commands may be used to reprocess or conditionally process all or portions of a Programmable KEY string.

The Label Designator Command (HB4) must always be followed by a label (nn). The label may be any value. Branch commands are always followed by the label value which to search for. Searches for labels always begin at the start of the string and proceed to the end of the string. Any search for a non-existent label will result in the termination of Programmable KEY string processing, and normal exit. Label Designator Commands and their respective values are ignored in all cases except for searches initiated by a branch condition. Programmable KEY processing and output continue normally with the character following the label value.

Branch Always Command (HBA) will unconditionally branch to label value (nn) that follows. The above Label Designator Command (HB4) is always used to specify the label value (nn).

Branch Conditional Command (HB5) branches to the label value (nn) that follows only if Handshake Input Line is -V. If Handshake Input Line is +V, Programmable KEY processing and output continue normally with the character following the Conditional Branch's label value.

In the following example, suppose the ProMotion is only used as a remote monitoring device. Assume the following to be true of the host device:

1) The host will power up "stopped"

2) When the unit begins to run, "R" is transmitted

3) When the unit stops, "S" is transmitted from the host

4) When the paper is low, +V is asserted on line connected to Handshake Input of ProMotion

It is desirable to display "STOPPED" when stopped and "RUNNING" when running, as well as the paper status. The example below will demonstrate the use of the branch commands.

BF BE B4 1 1B E STOPPED B5 2 0D 0A PAPER LOW 4B 2 BD R 1B E RUNNING B5 3 0D 0A PAPER LOW B4 3 BD S BA 1

Note: Spaces are shown for clarity only. No coded spaces required

This example assumes the setting of ECHO is DISABLED, and the setting of ESCAPE MODE is PRIVATE. SCREEN SIZE may be set to 24 x 8.

Stepping through the above example:

Note: $\langle esc \rangle = H1B$.

- 1) Serial output is toggled off (HBF)
- 2) Echo to the display is toggled on (HBE)
- 3) Label is placed (H4B '1')
- 4) The screen is cleared ($\langle esc \rangle$ 'E')
- 5) 'STOPPED' is displayed
- 6) If paper is good, jump to step 9 (HB5 '2')
- 7) 'PAPER LOW' is displayed on the next line
- 8) Label is placed (H4B '2')
- 9) Wait for "R" (HBD 'R')
- 10) The screen is cleared (<esc>'E')
- 11) 'RUNNING' is displayed
- 12) If paper is good, jump to step 15 (HB5 '3')
- 13) 'PAPER LOW' is displayed on the next line
- 14) Label is placed (HB4 '3')
- 15) Wait for 'S' (HBD 'S')
- 16) Jump to step 4 (HBA '1')

HANDSHAKE OUT LINE MANIPULATION

Handshake Out Line Manipulation command are useful when the need to signal an external device is needed. the handshake out line will maintain voltage levels between either +3V to +15V or -3V to -15V. Effective line load resistance should always be greater than 3K ohms (RS-232 interface only).

Assert Handshake Out Equals +V Command (HB9) will assert the Handshake out line (at interface connector) to +V. (This command is only active if Handshake setting is set to DISABLE).

Assert Handshake Out Equals -V Command (HB8) will assert the Handshake out line (at interface connector) to -V. (This command is only active if Handshake setting is set to DISABLE).

Display characters

PROGRAMMABLE DISPLAY CHARACTERS

Several custom characters may be programmed into the display. Each character consists of a standard 5 x 7 or a 7 x 14 dot matrix. Although a total of thirty two (32) characters are available, several programmable are used by the terminal for special functions, as shown in the following table.

Character 24 X 8 mode	Character 16 X 32 mode	HEX	DESCRIPTION
	14.1 T	9B	char 27 (Hardware handshake disabled from host)
PL		9C	char 28 (parity error indication)
		9D	char 29 (non-shifted, non-CTRL cursor)
	LT.	9E	char 30 (non-shifted, CTRL cur- sor) (Not available on 20 Key)
	LLT	9F	char 31 (shifted, CTRL cursor) (Not available on 20 Key)
ф.	+	A0	char 32 (shifted, non-CTRL cur- sor) (Not available on 20 Key)

User characters 29 - 32 are used as cursors, thereby allowing customized cursor shapes. User character 28 is the symbol displayed when a parity error occurs and DISPLAY PE is enabled.

for use of this feature. The following ANSI escape sequence is used to redefine a programmable display character:

DISPLAY CHARACTER PROGRAMMING

For a 32 X 16 mode display:

ESC[5zCn;R1;R2;R3;R4;R5;R6;R7;R8ESC[0z For a 24 X 8 mode display: ESC[5zCn;R1;R2;R3;R4;R5;R6;R7;R8;R9;R10;R11;R12;R13;R1

A working knowledge of binary and hexadecimal notation is helpful

ESC[5zCn;R1;R2;R3;R4;R5;R6;R7;R8;R9;R10;R11;R12;R13;R1 4;R15;R16ESC[0z

"Cn" is substituted by C1 - C32 signifying programmable characters 1 through 32. R1 - R8 represent row one through row eight (R1-R16 for 24 x 8 Mode) of the display character and should be replaced with a pair of ASCII Hexidecimal characters. Bit 7 of each byte represents the leftmost column of the character. Character C1 is stored at HEX location 81, C2 at HEX 82 and so forth.

To display user characters (8 bit data mode is required). Simply send H81 - HB0 (Decimal 129 to 176), to the terminal via host control or program any of the keys to output the appropriate HEX location. ECHO must be ENABLED to view the characters in this manner.

Note: When programming custom characters, the mode in which those characters will be displayed must be selected. If you program a character in 24 X 8 mode and then switch to 32 X 16 mode the character will not appear when the appropriate HEX code is received.

Note: For the 20 key keypad option there are no Alpha keys. Refer to the Decimal to HEX conversion tables to enter the equivalent value for the HEX key required EXAMPLE 1: The ProMotion is set for 16 X 32 display mode. Program the user character "C1" to display an upper case "A." The character cell is organized as 8 rows and columns. Bits 0 and 1 are ignored. If all row information is not sent, zeros will be inserted.

Bit Number	<u>7654</u>	3210	
Row 1 (R1)	0111	00 x x	70 (hexadecimal)
Row 2 (R2)	1 0 0 0	1 0 x x	88 (hexadecimal)
Row 3 (R3)	1 0 0 0	1 0 x x	88 (hexadecimal)
Row 4 (R4)	1 0 0 0	1 0 x x	88 (hexadecimal)
Row 5 (R5)	1111	10 x x	F8 (hexadecimal)
Row 6 (R6)	1 0 0 0	1 0 x x	88 (hexadecimal)
Row 7 (R7)	1000	10 x x	88 (hexadecimal)
Row 8 (R8)	0 0 0 0	00 x x	00 (hexadecimal)
x = Don't Care	•		

ESC[5zC1;70;88;88;88;F8;88;88;00ESC[0z

Program any key for a Hex 81 (129 D) and be sure the ECHO is ENABLED.

	b7	b6	b5	b4	b3	b2	b1	b0
Row 1								
Row 2								
Row 3								
Row 4								
Row 5								
Row 6								
Row 7								
Row 8								

Figure 4. 11: Character Example

Shaded areas are ignored.

When the programmed key is depressed the character above will be displayed.
EXAMPLE 2: Terminal is set for 8 X 24 mode.

Program the user character "C32" to display a superscript Copyright symbol. The character cell is organized as 16 rows and 8 columns. If all row information is not sent, zeros will be inserted.

Bit Number	<u>7654</u>	3210	
Row 1 (R1)	0 0 1 1	1 0 0 0	38(hexadecimal)
Row 2 (R2)	0 1 0 0	0100	44 (hexadecimal)
Row 3 (R3)	1011	1010	BA (hexadecimal)
Row 4 (R4)	1010	0010	A2 (hexadecimal)
Row 5 (R5)	1010	0010	A2 (hexadecimal)
Row 6 (R6)	1011	1010	BA (hexadecimal)
Row 7 (R7)	0 1 0 0	0 1 1 0	44 (hexadecimal)
Row 8 (R8)	0 0 1 1	1 0 0 0	38 (hexadecimal)
Row 9 (R9)	0 0 0 0	0 0 0 0	00 (hexadecimal)
Row 10 (R10)	0 0 0 0	0 0 0 0	00 (hexadecimal)
Row 11 (R11)	0 0 0 0	0 0 0 0	00 (hexadecimal)
Row 12 (R12)	0 0 0 0	0 0 0 0	00 (hexadecimal)
Row 13 (R13)	0 0 0 0	0 0 0 0	00 (hexadecimal)
Row 14 (R14)	0 0 0 0	$0 \ 0 \ 0 \ 0$	00 (hexadecimal)
Row 15 (R15)	0 0 0 0	0 0 0 0	00 (hexadecimal)
Row 16 (R16)	0 0 0 0	0 0 0 0	00 (hexadecimal)

The sequence is as follows:

ESC[5zC32;38;44;BA;A2;A2;BA;44;38;00;00;00;00;00;00;00;00 ESC[0z

Program any key for a Hex B0 (176 D) and be sure the ECHO is ENABLED.

Example 2 (Continued).

	b 7	b6	b5	b4	b3	b2	b1	b0
Row 1						_		
Row 2								
Row 3								
Row 4								
Row 5								
Row 6								
Row 7								
Row 8								
Row 9								
Row 10								
Row 11								
Row 12								
Row 13								
Row 14								
Row 15								
Row 16								

Figure 4. 12: Character Example

When the programmed key is depressed the character above will be displayed.

EXAMPLE 3: Terminal is set for 8 X 24 mode.

Program the user character "C20" to display a Pound Sterling symbol. The character cell is organized as 16 rows and 8 columns. If all row information is not sent, zeros will be inserted.

Bit Number	<u>7654</u>	3210	
_			
Row 1 (R1)	0 0 0 0	1 1 0 0	0C(hexadecimal)
Row 2 (R2)	0 0 0 1	0 0 1 0	12 (hexadecimal)
Row 3 (R3)	0001	$0 \ 0 \ 0 \ 0$	10 (hexadecimal)
Row 4 (R4)	0001	0 0 0 0	10 (hexadecimal)
Row 5 (R5)	0 1 1 1	1 1 0 0	7C (hexadecimal)
Row 6 (R6)	0001	0 0 0 0	10 (hexadecimal)
Row 7 (R7)	0001	0 0 0 0	10(hexadecimal)
Row 8 (R8)	0001	0 0 0 0	10 (hexadecimal)
Row 9 (R9)	0001	$0 \ 0 \ 0 \ 0$	10 (hexadecimal)
Row 10 (R10)	0 1 0 1	0 0 0 0	50 (hexadecimal)
Row 11 (R11)	1011	0 0 0 0	B0 (hexadecimal)
Row 12 (R12)	1001	1 0 0 1	99 (hexadecimal)
Row 13 (R13)	1010	0 1 1 0	A6 (hexadecimal)
Row 14 (R14)	0 1 0 0	0 0 0 0	40 (hexadecimal)
Row 15 (R15)	0 0 0 0	0 0 0 0	00 (hexadecimal)
Row 16 (R16)	0 0 0 0	0 0 0 0	00 (hexadecimal)

The sequence is as follows:

ESC[5zC20;0C;12;10;10;7C;10;10;10;50;B0;99;A6;40;00;00 ESC[0z

Program any key for a Hex 95 (149 D) and be sure the ECHO is ENABLED.

	b7	b6	b5	b4	b3	b2	b1	b0
Row 1								
Row 2								
Row 3								
Row 4								
Row 5								
Row 6								
Row 7								
Row 8								
Row 9								
Row 10								
Row 11								
Row 12								
Row 13								
Row 14								
Row 15								
Row 16								

Figure 4. 13: Character Example

When the programmed key is depressed the character above will be displayed.

4.5 ProMotion GRAPHICS MODE

There are two ways in which graphics may be handled by the ProMotion.

- 1. Graphics File Transfer and,
- 2. Manipulation of Graphics Memory Pixels. (See Page 44)

Graphics Memory exists on a different layer and is independent of the Text Memory.

There a two Graphics memory locations; Buffer0 and Buffer1

Figure 4. 14: Text and Graphics Memory

Graphics Memory is inactive until the contents are displayed via the **esc**[5zGD0 or **esc**[5zGD1 sequence.

Text will be superimposed on top of the Graphic Image. It is important to note that the graphic image not be displayed in a manner which will obstruct any text on the screen or vice versa.

Text Displayed Graphics: Display Buffer 0

Display Buffer 1

Figure 4. 15: Selecting Graphics Memory etion of the first image download, the second i

Upon completion of the first image download, the second image may be downloaded. Alternatively, one Graphic image may be loaded as the other is being displayed.

THE TWO GRAPHICS BUFFERS MAY NOT BE DISPLAYED SIMULTANEOUSLY

The two may be toggled using the esc[5zGD0 esc[0z or esc[5zGD1 esc[0z sequence.]]

Graphic images representing two operating modes may be an example of this operation.

Graphics may be downloaded to one of two buffers in the ProMotion memory via the serial port using the sequence below:

DOWNLOAD GRAPHICS FILE TO PROMOTION

Load binary data to graphics buffer 0	esc[5zGL0;
Load binary data to graphics buffer 1	esc [5zGL1;

A Two Technologies Utility (PROCNV.EXE See Page 40), is used to convert a 192 X 128 one bit per pixel (2 color) graphics bit map file (.bmp) to binary format <filename>.ttb. The file size is 3K (3072) bytes.

The syntax is as follows:

esc[5zGL0;<transmission of serial string> esc[0z

IMPORTANT: The sequence **esc**[0z must be appended else the keypad will not respond.

In order to display either image the **esc**[5zGD0 **esc**[0z or **esc**[5zGD1 **esc**[0z sequence must be issued.

Note:

Text processing will occur as normal provided no graphic image is being displayed. Due to the processing of Graphics, as soon as an image is selected for display there will be a slow down in Text processing especially when switching between text modes (24 X 8 to 32 X 16 or vice versa).

The graphics memory will lie on top of the text layer which will allow text to be superimposed with the graphic. If Text is not desired on the graphic image, the text must first be cleared. Text and graphics are individually controlled.

FILE CONVERSION UTILITY (PROCNV.EXE)

The file conversion utility PROCNV.EXE is used to convert a standard two color (1 bit) bitmap (*.bmp) image into a binary file with an extension of ttb.

The syntax for the proper execution is:

procnv <bitmap filename with no extension>

See sample screen below:

The ProMotion screen format can be described as follows: The resolution of the display is 192x128 pixels - black & white (monochrome)

Each pixel is controlled with one bit of screen memory and is formatted as follows:

Black = 1 (bit set) White = 0 (bit clear)

GRAPHICS CONTROL ESCAPE SEQUENCES

used with applicable model

Table 16: Graphics ANSI Control Summary

ESCAPE SEQUENCE	DESCRIPTION			
Download Graphics	file to ProMotion			
esc[5zGL0	Load binary data to graphics buffer 0			
esc[5zGL1	Load binary data to graphics buffer 1			
Display Buffer Cont	ents			
esc[5zGD0	Display Buffer 0 contents			
esc[5zGD1	Display Buffer 1 contents			
Clear Buffer Conten	ts			
esc[5zGB0	Clear contents of Buffer 0			
esc[5zGB1	Clear contents of Buffer 1			
Draw Real-time Gra	phics			
esc[5zGS0	Set Pixel in Buffer 0			
esc[5zGS1	Set Pixel in Buffer 1			
esc[5zGC0 Reset Pixel in Buffer 0				
esc[5zGC1	Reset Pixel in Buffer 0			
	·			
esc[0z	Terminate operation			

<u>**IMPORTANT NOTE</u>**: When the final terminator esc[0z (esc = H1B)] is successfully received, the programming information is inserted into the Graphics data storage area.</u>

Display Buffer Escape sequences

NOTE: Use of higher BAUD rates (19,200 and 57,600), facilitates faster transfer and display of graphics. Handshaking must be enabled at higher BAUD rates to insure proper transfer of a graphics file.

The commands are shown below:

Clear Buffer Contents

Clear contents of Buffer 0 Clear contents of Buffer 1 esc[5zGB0 esc[0z esc[5zGB1 esc[0z

Note: No spaces required. **Note:** esc[0z must be appended for the command to execute

Once the contents of the buffer have been loaded, the terminal must be prompted to display the graphics image as follows: Display Buffer Contents

Display Buffer 0 contents	esc[5zGD0 esc[0z
Display Buffer 1 contents	esc[5zGD1esc[0z

Note: esc[0z must be appended for the above command to execute. If the contents of the memory buffer are displayed prior to new data being loaded or the contents cleared, what ever random pattern has been stored will be displayed.

Example:

A typical series of commands to Clear Buffer contents, transfer a graphics image and display the contents on the LCD display;

esc[5zGB0H1B[0z esc[5zGL0;<Serial string (*.ttb File)> esc[0z esc[5zGD0H1B[0z

Note: The Buffer may be displayed before transfer of ttb file. The only difference being that the screen will display the image as it is being transferred which gives the appearance of a scrolling display.

REAL TIME GRAPHICS MODE

The second method is direct manipulation of display Pixels in real time. Draw Real-time Graphics

Set Pixel in Buffer 0 **esc**[5zGS0;xx,yy **esc**[0z A HEX value for the location of each Pixel must be defined. xx is the HEX value along the horizontal and yy is the HEX value along the vertical. Example:

esc[5zGS0;20;30 esc[0z

Set Pixel in Buffer 1 Example:

esc[5zGS1;xx,yy esc[0z

esc[5zGS1;45;1A esc[0z

The same rules apply for this mode as with image mode. The buffer must first be cleared then the contents of the buffer must be displayed.

The following illustration shows the display layout;

Terminate operation

<u>IMPORTANT NOTE</u>: When the final terminator **esc[0z** is successfully received, the programming information is inserted into the Graphics data storage area.

esc[0z

THIS PAGE LEFT INTENTIONALLY BLANK

Section 4

4.6 Advanced Control Mode (ACM)

ACM is accessible when the ProMotion is in ANSI mode.

There are no PRIVATE Mode escape sequences in ACM, however, the ProMotion may be set to PRIVATE Mode after completion of ACM functions via ESC[?21 then returned to ANSI (ESC <).

There are several restrictions which are imposed when operating in ACM :

- 1. The setup menus are disabled when in ACM ; CTRL, SHIFT, F1 or CTRL, SHIFT, F2, as well as CONTRAST, CTRL F5, will not respond.
- **2.** If any keys have been redefined, they will return to their default settings until the suspension of ACM activities.
- **3.** Only the host may enable ACM and these settings cannot be saved; If power is removed all ACM settings will be disabled.
- **4.** The modifier keys (CTRL, SHIFT) will only effect the display and not the key code outputs; (e.g., The F1 key will output 41H with no modifier keys pressed.

If the CTRL key is pressed and then F1, 41H will be output. The same applies for the SHIFT key)

The + \square \square \square display characters will be shown as normal, provided the SHIFT and CTRL keys are enabled.

(See following pages).

Note: Cursors shown in 24 X 8 Screen Mode

ESCAPE SEQ.	DESCRIPTION		
ESC [1v	Enable ACM		
ESC [21v	Disable ACM		
SHIFT and CTI	RL key controls		
In ACM the fol	llowing only effects the display.		
ESC [4v	Disable SHIFT, Disable CTRL		
ESC [5v	Enable SHIFT, Disable CTRL		
ESC [6v Disable SHIFT, Enable CTRL			
ESC [7v Enable SHIFT, Enable CTRL			
Note: SHIFT and CTRL key controls may be used			
with ACM enabled or disabled.			

Table 17: ANSI ACM CONTROLS

ENQ ACKNOWLEDGEMENT

The normal response to the Inquiry ENQ (05H) from the host will be an ACK (06H) character.

When ACM is enabled (ESC[1v), the terminal will respond with a DLE (10H) Character.

This will insure that the host can verify that ACM has indeed been enabled on the ProMotion.

It is important to note, that only the HOST may select ACM via the ESC[1v sequence.

When an ENQ (05H) is sent from the HOST and ACM has not been selected an ACK (06H) will be received from the ProMotion.

Once the ACM has been selected by the HOST an ENQ should be sent and the response from the ProMotion will be a DLE (10H).

The HOST should then periodically check for DLE at a fixed time interval (e.g., 25mS) to verify;

- 1. The ProMotion is attached and,
- 2. The ProMotion is in Advanced Control Mode.

KEY CODES

When not in ACM any key may be redefined.

Δ

As soon as ACM is selected ALL key codes will revert to their default settings.

The Parameter Setup and the Key Output Definition Setup Menus are disabled as well as Contrast Control when in ACM

ACM Transition

The HOST may send a request for ACM at any time. In some situations the Operator may have one of the keys held down on the ProMotion while the HOST is requesting ACM or, one or more keys may be pressed while the HOST is releasing ACM.

See Application Note 2 in Appendix C for more **IMPORTANT INFORMATION** on the proper use of DLE.

KEY RELEASE CODE FUNCTION

Communication must be set to 8 data bits in Advanced Control Mode

During normal operation of the ProMotion, the terminal will only send the appropriate key code upon key depression unless KNP has been ENABLED. In this case a NULL (00H) will be sent when the key is released. See Section 2 page 6.

When ACM is enabled, (ESC[1v from HOST), the terminal will send a unique code when the key is released.

The most significant digit of the ASCII key code will be set to a one and the corresponding HEX code will be transmitted to the host.

Example: Press the F1/A key. The terminal will send a HEX 41 to the host. Release the F1/A key. The terminal will send a HEX C1 to the host.

```
Press F1/A = 41H = 01000001
Release = C1H = 11000001
MSB Set
```

SECTION 4

N-KEY ROLLOVER

Note: N-Key rollover is only active when in ACM. Any combination of keys may be pressed simultaneously or in any order with the exception of the restrictions listed below. Restrictions:

If any combination of 3 or more keys results in any two being in the same Column and Row, the resulting key codes will not be transmitted. Example below:

Figure 4. 18: Restricted key combination example

However, if the "7" and "1" keys are pressed, their codes will be transmited. If, while they are being held down, the "3" key is pressed, no key code will be sent for the "3" key.

There is no key repeat when ACM N-Key Rollover is in use.

The keys may be pressed in any order. When any key is released, the corresponding release code (Key Code + 80H), will be transmitted to the host

KEY CODES

In ACM, the CTRL and SHIFT will create specific Key Codes:

These keys are no longer modifier keys.

The display will show the appropriate display character as shown above.

When in normal mode the CTRL and SHIFT keys send no codes but rather act as modifiers.

The exception to this is when either key is disabled.

In the case of the disabled key, it will no longer act as a modifier and will send the corresponding key code when pressed.

If KNP is enabled, the key's release code will be sent when the key is released.

See the following page for details.

SHIFT AND CTRL ENABLE/DISABLE

ESC [4v	Disable SHIFT, Disable CTRL
ESC [5v	Enable SHIFT, Disable CTRL
ESC [6v	Disable SHIFT, Enable CTRL
ESC [7v	Enable SHIFT, Enable CTRL

These escape codes will function differently for ACM and Non-ACM.

ACM only changes the cursor's appearance on the display where the non-ACM transmits the key output codes for the disabled key as well as the cursor display for the enabled key.

Also, the disabled keys function as a modifier is also disabled.

Table 18: Enable/Disable Function

ESC[4v

Key	Cursor Display	Output	Release Code		
ACM					
SHIFT	No Change	5CH	DCH		
CTRL	No Change	7CH	FCH		
Normal Mode					
SHIFT	No Change	5CH	n/a		
CTRL	No Change	7CH	n/a		

ESC[5v

Key	Cursor Display	Output	Release Code			
ACM						
SHIFT	#	5CH	DCH			
CTRL	No Change	7CH	FCH			
Normal M	Normal Mode					
SHIFT		No Output	n/a			
CTRL	No Change	7CH	n/a			

ESC[6v

Key	Cursor Display	Output	Release Code
ACM			
SHIFT	No Change	5CH	DCH
CTRL	Г Т	7CH	FCH
Normal M	lode		
SHIFT	No Change	5CH	n/a
CTRL	T	No Output	n/a

ESC[7v

Key	Cursor Display	Output	Release Code		
ACM					
SHIFT	4	5CH	DCH		
CTRL	L T	7CH	FCH		
SHIFT +		5CH + 7CH	DCH + FCH		
CTRL	5				
Normal M	ode				
SHIFT	.	No Output	n/a		
CTRL		No Output	n/a		
SHIFT + CTRL		No Output	n/a		

Section 5 Troubleshooting

No cursor on display				
CAUSE	<u>SOLUTION</u>			
Power Problems				
No power to terminal (host supplied).	Verify proper voltage to terminal.			
No power to terminal (adapter supplied).	a. Verify wall plug is functional.b. Check wiring of adapter if wired as kit.			
Reversed Polarity	Cable Wiring or Host connector wiring			
	For Cable Connector Pinout See Section 1 page 1			
Cursor Problems				
Cursor not enabled	If Host control sends an ESC[5t in ANSI mode or ESC G in Private Mode, the cursor will be dis- abled. Use ESC[4t (ANSI) or ESC F (Private), to re-enable cursor The terminal Parameter Settings may have been changed as well to disable cursor. Use CTRL, SHIFT, F1 to reset (BKSP, ENTER, F1 on 20 Key keypad).			
Resets by Itself				
CAUSE	SOLUTION			
Low voltage output	Verify proper voltage to terminal.			
Cable resistance too high	Cable should be 26 AWG or larger			
Wire gauge too small	Cable should be 26AWG or larger.			

Not receiving or displaying correct characters				
CAUSE	SOLUTION			
Incorrect BAUD rate	Open parameter menu. Change to correct BAUD rate.			
	KEYS TO ACCESS SET PARAMETERS			
	BAUD = 9600 F1-CHANGE THE SETTING F2-NEXT OPTION F3-PREVIOUS OPTION F4-QUIT WITHOUT SAVING F5-SAVE & EXIT			

CAUSE

ProTerm waiting for handshake line to be asserted.

ENABLE HANDSHAKE

F1-CHANGE THE SETTING F2-NEXT OPTION F3-PREVIOUS OPTION F4-QUITWITHOUT SAVING F5-SAVE & EXIT

SOLUTION

If handshaking is being used:

a. Verify that the wiring between the host and terminal is correct.

b. For RS-232, TTL/CMOS, verify that the handshake line from the host is asserted.

If handshaking is not being used: Access the Setup Parameter Menu by depressing the CTRL, SHIFT and F1 keys. The terminal will be in the SETUP PARAMETER MODE and the BAUD rate should show on the display. Press the F2 key until the display shows the HAND-SHAKE parameter. If the parameter is ENABLED, press F1 to disable handshaking.

PE is Displayed

CAUSE

Parity Error

SOLUTION

Open Parameter menu. Change PARITY to correct settings.

Double Characters Displayed

CAUSE	SOLUTION
Echo Turned On.	Open Parameter menu. Change ECHO parameter to DISABLE.

Unit seems to lock-up on power up					
CAUSE	SOLUTION				
ProTerm waiting for hand- shake line to be asserted.	<i>If handshaking is being used:</i> a. Verify that the wiring between the host and ter- minal is correct.				
	b. For RS-232, TTL/CMOS, verify that the handshake line from the host is asserted.				
	If handshaking is not being used: a. Access the Setup Parameter Menu by depressing the CTRL, SHIFT and F1 keys. The terminal will be in the SETUP PARAMETER MODE and the BAUD rate should show on the display. Press the F2 key until the display shows the HANDSHAKE parameter. If the param- eter is ENABLED, press F1 to disable handshaking.				
Unit does not perform	self-test				
CAUSE	SOLUTION				
Self-test parameter disabled	Open parameter menu. Change TEST parameter to ENABLED				

Cannot access parameter mode				
Cannot access function key programming mode				
CAUSE SOLUTION				
Configuration Menus are locked out	Remove power. Depress the CTRL, SHIFT and F3 keys while applying power to re enable modifications.			
Cannot access parameter mod	e or function key programming mode (cont'd.)			
CAUSE	CAUSE SOLUTION			
ProTerm waiting for hand- shake line to be asserted	See solution on Section 8 page 11.			
Incorrect characters di	isplayed.	1		
CAUSE	SOLUTION	Se		
Parity settings incorrect	Open parameter menu. Change PARITY to correct setting.	ctior		
Data bits incorrect	Open parameter menu. Change DATA BITS to correct setting.	15		
Incorrect BAUD rate	Open parameter menu. Change the BAUD rate by depressing the F1 key until the correct BAUD rate is visible.			
Inverted data lines.	Verify wiring is correct.			

Section 5

Function keys not sending correct values						
CAUSE	SOLUTION					
Key has been acciden- tally reprogrammed.	Reprogram function key. See Section 4					
EEPROM corrupted by line disturbance.	Disconnect power. Hold down keys as illus- trated below.					
	LOAD DEFAULTS?					
	F1-YES F5-NO					
	Reapply power. This will restore factory defaults. Reprogram parameters and function keys.					
Terminal reset to factory defaults after repair.	Reprogram function keys. See Section 4 .					

Lost characters					
CAUSE	SOLUTION				
Needs to handshake	ProTerm waiting for handshake line to be asserted.				
Key does not repeat when pressed					
CAUSE	SOLUTION				
Repeat parameter disabled	Open parameter menu. Change repeat parameter to SLOW or FAST				

THIS PAGE LEFT INTENTIONALLY BLANK

Section 6 Miscellaneous

6.1 CUSTOMIZATIONS

Many customizations of the ProMotion are possible. Those available include, but are not limited to, keypad graphics overlays, keypad character reassignments, custom packaging and special programming. Contact Two Technologies to discuss your requirements.

Figure 1.1: Custom ProMotion Example

MAN0328 Rev. A 7/18/01

6.2 ACCESSORIES

Some of the accessories available for the ProMotion hand held terminal are described below. For information on all accessories, contact Two Technologies, Inc.

Connecting Cables

Permanent cables are available which feature 15 Pin D Shell terminations on the end. Lengths are 7 feet and 15 feet. Custom cable configurations are available. Contact Two Technologies, Inc. for more information.

WIRED ADAPTERS

Refer to Accessories section (on-line catalog) at http://www.2t.com for other Connection Peripherals and cables.

POWER SUPPLY/BATTERY CHARGER

#1226-1- 7.5VDC @ 500 MA. or 9V @ 300 mA. Wall Mount Power Supply

Note: This power supply does not connect directly onto the ProMotion.

HARD-WIRED CABLES

*NOTE: Custom wiring configurations are available.

CONTACT TWO TECHNOLOGIES, INC. FOR INFORMATION ON ANY CUSTOM CONFIGURATIONS

MAN0328 Rev. A 7/18/01

14 Miscellaneous

Copyright[©] 2000 Two Technologies, Inc.

Section 7 Appendices

APPENDIX A

Note: Cn designates programmable key identifier.

Table 19: ASCII TABLE

<u>DEC</u>	<u>HEX</u>	<u>ASCII</u>	<u>Cn</u>	<u>DISP</u> <u>CHAR</u>	<u>DEC</u>	<u>HEX</u>	<u>ASCII</u>	<u>Cn</u>	<u>DISP</u> CHAR
0	00	NUL	n/a	n/a	32	20	space	n/a	space
1	01	SOH	n/a	n/a	33	21	!	C21	!
2	02	STX	n/a	n/a	34	22	"	C22	"
3	03	ETX	n/a	n/a	35	23	#	C23	#
4	04	EOT	n/a	n/a	36	24	\$	C24	\$
5	05	ENQ	n/a	n/a	37	25	%	C25	%
6	06	ACK	n/a	n/a	38	26	&	C26	&
7	07	BEL	n/a	n/a	39	27	'	C27	'
8	08	BS	n/a	n/a	40	28	(C28	(
9	09	HT	n/a	n/a	41	29)	C29)
10	0A	LF	n/a	n/a	42	2A	*	C2A	*
11	0B	VT	n/a	n/a	43	2B	+	C2B	+
12	0C	FF	n/a	n/a	44	2C	'	C2C	'
13	0D	CR	n/a	n/a	45	2D	-	C2D	-
14	0E	SO	n/a	n/a	46	2E		C2E	
15	0F	SI	n/a	n/a	47	2F	/	C2F	/
16	10	DLE	n/a	n/a	48	30	0	C30	0
17	11	DC1	n/a	n/a	49	31	1	C31	1
18	12	DC2	n/a	n/a	50	32	2	C32	2
19	13	DC3	n/a	n/a	51	33	3	C33	3
20	14	DC4	n/a	n/a	52	34	4	C34	4
21	15	NAK	n/a	n/a	53	35	5	C35	5
22	16	SYNC	n/a	n/a	54	36	6	C36	6
23	17	ETB	n/a	n/a	55	37	7	C37	7
24	18	CAN	n/a	n/a	56	38	8	C38	8
25	19	EM	n/a	n/a	57	39	9	C39	9
26	1A	SUB	n/a	n/a	58	ЗA	:	C3A	:
27	1B	ESC	n/a	n/a	59	3B	;	C3B	;
28	1C	FS	n/a	n/a	60	3C	<	C3C	<
29	1D	GS	n/a	n/a	61	3D	=	C3D	=
30	1E	RS	n/a	n/a	62	3E	>	C3E	>
31	1F	US	n/a	n/a	63	3F	?	C3F	?

Table 19: ASCII TABLE

<u>DEC</u>	<u>HEX</u>	<u>ASCII</u>	<u>Cn</u>	<u>DISP</u> <u>CHAR</u>	DEC	<u>HEX</u>	<u>ASCII</u>	<u>Cn</u>	<u>DISP</u> <u>CHAR</u>
64	40	@	C40	@	96	60	•	C60	`
65	41	А	C41	А	97	61	а	C61	а
66	42	В	C42	В	98	62	b	C62	b
67	43	С	C43	С	99	63	С	C63	С
68	44	D	C44	D	100	64	d	C64	d
69	45	Е	C45	Е	101	65	е	C65	е
70	46	F	C46	F	102	66	f	C66	f
71	47	G	C47	G	103	67	g	C67	g
72	48	Н	C48	Н	104	68	h	C68	h
73	49	I	C49	I	105	69	i	C69	i
74	4A	J	C4A	J	106	6A	j	C6A	j
75	4B	K	C4B	К	107	6B	k	C6B	k
76	4C	L	C4C	L	108	6C	I	C6C	I
77	4D	М	C4D	М	109	6D	m	C6D	m
78	4E	Ν	C4E	Ν	110	6E	n	C6E	n
79	4F	0	C4F	0	111	6F	0	C6F	0
80	50	Р	C50	Р	112	70	р	C70	р
81	51	Q	C51	Q	113	71	q	C71	q
82	52	R	C52	R	114	72	r	C72	r
83	53	S	C53	S	115	73	S	C73	S
84	54	Т	C54	Т	116	74	t	C74	t
85	55	U	C55	U	117	75	u	C75	u
86	56	V	C56	V	118	76	V	C76	V
87	57	VV	C57	VV X	119	77	W	070	W
88	58	X	C58	X	120	78	х	078	Х
89	59	Y 7	C59	Y 7	121	79	У	C79	У
90	5A	Z	C5A	Z	122	7A 7D	z		Z
91	5B	L	C5B	L	123	7B 7C	{	C7B	{
92	50	1		\ 1	124		1		1
93	5D 5E]]	120		}		}
94 95	0⊏ 5F		C5E		120	/⊏ 7⊑		C7E	\rightarrow n/a
00	01	_	001			11		011	n/u
Appendix B ProTerm Extended Character Set (PT Limited to 32 characters) Characters beginning with A1 are reverse video

 Table 20: Extended Decimal to HEX

Dec	HEX	Cn	<u>Display</u>	Dec	HEX	Cn	<u>Display</u>
	<u>1112/1</u>		<u>Character</u>		<u>1112/11</u>		<u>Character</u>
128	80	n/a	n/a	164	A4	CA4	\$
129	81	C1	n/a	165	A5	CA5	%
130	82	C2	n/a	166	A6	CA6	&
131	83	C3	n/a	167	A7	CA7	6
132	84	C4	n/a	168	A8	CA8	(
133	85	C5	n/a	169	A9	CA9)
134	86	C6	n/a	170	AA	CAA	*
135	87	C7	n/a	171	AB	CAB	+
136	88	C8	n/a	172	AC	CAC	6
137	89	C9	n/a	173	AD	CAD	-
138	8A	CA	n/a	174	AE	CAE	
139	8B	CB	n/a	175	AF	CAF	1
140	8C	CC	n/a	176	B0	CB0	0
141	8D	CD	n/a	177	B1	CB1	1
142	8E	CE	n/a	178	B2	CB2	2
143	8F	CF	n/a	179	B3	CB3	3
144	90	C10	n/a	180	B4	CB4	4
145	91	C11	n/a	181	B5	CB5	5
146	92	C12	n/a	182	B6	CB6	6
147	93	C13	n/a	183	B7	CB7	7
148	94	C14	n/a	184	B8	CB8	8
149	95	C15	n/a	185	B9	CB9	9
150	96	C16	n/a	186	BA	CBA	:
151	97	C17	n/a	187	BB	CBB	;
152	98	C18	n/a	188	BC	CBC	<
153	99	C19	n/a	189	BD	CBD	=
154	9A	C1A	n/a	190	BE	CBE	>
155	9B	C1B	Cursor	191	BF	CBF	?
156	9C	C1C	Characters	192	C0	CC0	@
157	9D	C1D	See	193	C1	CC1	Α
158	9E	C1E	Section	194	C2	CC2	В
159	9F	C1F	4	195	C3	CC3	С
160	A0	C20	Page 32	196	C4	CC4	D
161	A1	CA1	Į	197	C5	CC5	E
162	A2	CA2	"	198	C6	CC6	F
163	A3	CA3	#	199	C7	CC7	G

Table 20: Extended Decimal to HEX

<u>Dec</u>	<u>HEX</u>	<u>Cn</u>	<u>Display</u> Character	<u>Dec</u>	<u>HEX</u>	<u>Cn</u>	<u>Display</u> Character
200	C8	CC8	Н	236	EC	CEC	
201	C9	CC9		237	ED	CED	m
202	CA	CCA	J	238	EE	CEE	n
203	CB	CCB	K	239	EF	CEF	Ο
204	CC	CCC	L	240	F0	CF0	р
205	CD	CCD	М	241	F1	CF1	q
206	CE	CCE	Ν	242	F2	CF2	r
207	CF	CCF	Ο	243	F3	CF3	S
208	D0	CD0	Ρ	244	F4	CF4	t
209	D1	CD1	Q	245	F5	CF5	u
210	D2	CD2	R	246	F6	CF6	V
211	D3	CD3	S	247	F7	CF7	W
212	D4	CD4	Т	248	F8	CF8	X
213	D5	CD5	U	249	F9	CF9	У
214	D6	CD6	V	250	FA	CFA	Z
215	D7	CD7	W	251	FB	CFB	{
216	D8	CD8	X	252	FC	CFC	
217	D9	CD9	Υ	253	FD	CFD	}
218	DA	CDA	Ζ	254	FE	CFE	\rightarrow
219	DB	CDB]	255	FF	CFF	\leftarrow
220	DC	CDC	١				
221	DD	CDD]				
222	DE	CDE	^				
223	DF	CDF	_				
224	E0	CE0	٤				
225	E1	CE1	а				
226	E2	CE2	b				
227	E3	CE3	С				
228	E4	CE4	d				
229	E5	CE5	е				
230	E6	CE6	f				
231	E7	CE7	g				
232	E8	CE8	h				
233	E9	CE9	i				
234	EA	CEA	j				
235	EB	CEB	k				

This example shows a simple graphics down load to the ProMotion using a commercially available Terminal Program

Figure 1: Procnv DOS screen

1. Once a 1 Bit graphics bitmap image has been created, it needs to be converted to a binary file.

The example above illustrates this simple utility.

2. The corresponding ttb file created will be transferred to the ProMotion.

3. On power up, the ProMotion's graphic memory will contain some random information. First clear this memory. This is a good practice but is not absolutely necessary as long as the contents will not be displayed until the valid 'ttb' Graphics file is transferred. The new graphic should over write whatever is in memory. Examples of initialization are shown below.

Figure 2: ProMotion Graphics Memory Initialization

Each ASCII sequence for any memory function must be terminated with ESC[0z.

Only when the dump to memory command is issued is it not necessary to enter ESC[0z.

The Illustration below show the result of the memory transfer from the terminal program.

Figure 3: Graphics Dump

The display will show the graphics image as long as the display graphics memory command ESC[5zGD0, has been issued prior to the transfer. The terminal will not respond to any further keystroke commands until the ESC[0z has been issued. The termination command in the above sequence was manually entered from the host after the transfer.

The same process may be repeated for Graphics memory buffer #1 after completion of the operation for Memory Buffer #0

The esc[5zGD0 or GD1 command may be issued at this point to display the graphic.

21

THIS PAGE LEFT INTENTIONALLY BLANK

Overview

The use of Advance Control Mode requires some attention to safety during operation when using a pendant for setup and operation of an industrial robot.

This Application note will address some of the considerations to be taken into account by the end user as well as features built into the ProMotion

Refer to Section 4 of the ProMotion manual MAN0328.

Setup

Table 21: Summary of ACM Escape Sequences

ESCAPE SEQ.	DESCRIPTION			
ESC [1v	Enable ACM Mode			
ESC [21v	Disable ACM Mode			
SHIFT and CTRL key controls				
ESC [4v	Disable SHIFT, Disable CTRL			
ESC [5v	Enable SHIFT, Disable CTRL			
ESC [6v	Disable SHIFT, Enable CTRL			
ESC [7v	Enable SHIFT, Enable CTRL			
Note: SHIFT and CTRL key controls may be used				
with ACM mode enabled or disabled.				

It is important to note, as mentioned in the ACM section of the manual, that only the HOST may select ACM via the ESC[1v sequence.

Note: The ProMotion is set as follows:

Mode: ANSI Baud Rate: As determined by HOST Parity: As determined by HOST Data Bits: 8 (for proper detection of key release codes) *KNP FUNCTION: ENABLE *'KEY REPEAT = DISABLE

All other parameters: default

*KNP and Key Repeat not required for ACM. Used for this example. Note: When KNP is ENABLED, the key repeat function is automatically DISABLED. When any key is pressed on the ProMotion and ACM has not been selected, a NULL (00H) will be transmitted from the ProMotion on Key Release.

When an ENQ (05H) is sent from the HOST and ACM has not been selected an ACK (06H) will be received from the ProMotion.

Once the ACM has been selected by the HOST an ENQ (05H) should be sent and the response from the ProMotion will be a DLE (10H) to verify ACM has been engaged.

The HOST should then periodically check for DLE at a fixed time interval (e.g., 25mS) to verify;

- 1. The ProMotion is attached and,
- 2. The ProMotion is in Advanced Control Mode.

KEY CODES

When not in ACM any key may be redefined.

As soon as ACM is selected ALL key codes will revert to their default settings.

The Parameter Setup and the Key Output Definition Setup Menus are disabled as well as Contrast Control when in ACM

ACM Transition

The HOST may send a request for ACM at any time. In some situations the Operator may have one of the keys held down on the ProMotion while the HOST is requesting ACM or, one or more keys may be pressed while the HOST is releasing ACM.

ALL KEYS MUST BE RELEASED AND THEIR CORRESPONDING KEY RELEASE CODES AND THE PROPER RESPONSE TO ENO RECEIVED BY THE HOST PRIOR TO ANY MODE CHANGE.

Scenario #1: "Normal" operation to ACM

Note: The ProMotion is configured with KNP Enabled to send a key release code of NULL (00H). See following page for text.

SECTION 7

2. The HOST should then Transmit an ENQ (05H) to verify ACM.

3. A response of ACK (06H) is received. The HOST recognizes the fact that the terminal is still responding as in "Normal" mode.

4. When the Terminal is set to KNP, a NULL (00H) will be transmitted to the HOST **UPON KEY RELEASE**.

5. The HOST once again Transmits an ENQ to the terminal. A response of DLE (10H) is received by the HOST verifying ACM and allowing the robot to respond to key strokes transmitted from the terminal.

6. If after repeated ENQ and a defined time limit, there is no DLE received, The HOST may sound an alarm or the system may inform the user of the problem by another method. The user should suspend any operation of the system and attend to the problem.

7. After successful transition to ACM, the HOST should send an ENQ and expect a DLE every 25 mS. See next Flow Diagram.

As a means of alerting the operator that the equipment is/could be in motion, you could do one or both of the following;

- Equip the terminal with optional LEDs and send commands to flash these during motion
- Send commands to the terminal that will activate Audio Tones during equipment motions.

Figure 4: ENQ Response

In this example there are two failures which could cause a cessation of machine motion.

 The ProMotion has reverted back to "Normal" Mode which results in an ACK (06H) being issued in response to an ENQ and;
 A physical break has resulted in loss of all communication with the HOST.

See Illustrations on page 15.

Scenario #2: ACM operation to "Normal"

See following page for text.

Figure 5: KeyPad Operation

1. The HOST sends the escape sequence of [21v to the Terminal to disable ACM while a key is being held down by the operator.

2. Immediately the Terminal sends the key release code corresponding of any key(s) being pressed at the time the release ACM was issued.

3. An ENQ is transmitted to the terminal. The HOST receives a ACK (06H) from the terminal. (See Figure 4).

The Terminal operation is suspended until all keys are released.

4. The HOST will then respond to key strokes received from the terminal.

5.Key repeat (if ENABLED) will resume unless KNP is ENABLED. Any programmed keys will now resume normal operation.

DLE for detection of disconnection

